BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 9114022)

  • 1. The origin of red algae: implications for plastid evolution.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4520-5. PubMed ID: 9114022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endosymbiotic origin, diversification and fate of plastids.
    Keeling PJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):729-48. PubMed ID: 20124341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates.
    Petersen J; Teich R; Brinkmann H; Cerff R
    J Mol Evol; 2006 Feb; 62(2):143-57. PubMed ID: 16474987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis.
    Bodył A
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):201-222. PubMed ID: 28544184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J; Horák A; Oborník M; Lukes J; Keeling PJ
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10949-54. PubMed ID: 20534454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are red algae plants? A critical evaluation of three key molecular data sets.
    Stiller JW; Riley J; Hall BD
    J Mol Evol; 2001 Jun; 52(6):527-39. PubMed ID: 11443356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids.
    Shalchian-Tabrizi K; Skånseng M; Ronquist F; Klaveness D; Bachvaroff TR; Delwiche CF; Botnen A; Tengs T; Jakobsen KS
    Mol Biol Evol; 2006 Aug; 23(8):1504-15. PubMed ID: 16699169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A; Beszteri B; Maier UG; Bowler C; Valentin K; Bhattacharya D
    Science; 2009 Jun; 324(5935):1724-6. PubMed ID: 19556510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of next-generation sequencing to unravelling the evolutionary history of algae.
    Kim KM; Park JH; Bhattacharya D; Yoon HS
    Int J Syst Evol Microbiol; 2014 Feb; 64(Pt 2):333-345. PubMed ID: 24505071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.
    Burki F; Flegontov P; Oborník M; Cihlár J; Pain A; Lukes J; Keeling PJ
    Genome Biol Evol; 2012; 4(6):626-35. PubMed ID: 22593553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates.
    Patron NJ; Rogers MB; Keeling PJ
    Eukaryot Cell; 2004 Oct; 3(5):1169-75. PubMed ID: 15470245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Plastids of Euglenids and Chlorarachniophytes Function with a Mix of Genes of Red and Green Algal Ancestry.
    Ponce-Toledo RI; Moreira D; López-García P; Deschamps P
    Mol Biol Evol; 2018 Sep; 35(9):2198-2204. PubMed ID: 29924337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny.
    Stiller JW; Harrell L
    BMC Evol Biol; 2005 Dec; 5():71. PubMed ID: 16336687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The single, ancient origin of chromist plastids.
    Yoon HS; Hackett JD; Pinto G; Bhattacharya D
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15507-12. PubMed ID: 12438651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary significance of the ring-like plastid nucleus in the primitive red alga Cyanidioschyzon merolae as revealed by drying.
    Kuroiwa T; Ohnuma M; Imoto Y; Yagisawa F; Misumi O; Nagata N; Kuroiwa H
    Protoplasma; 2020 Jul; 257(4):1069-1078. PubMed ID: 32185527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae.
    Schön ME; Zlatogursky VV; Singh RP; Poirier C; Wilken S; Mathur V; Strassert JFH; Pinhassi J; Worden AZ; Keeling PJ; Ettema TJG; Wideman JG; Burki F
    Nat Commun; 2021 Nov; 12(1):6651. PubMed ID: 34789758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.