These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9114232)

  • 41. Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
    Akay T; Büschges A
    J Neurophysiol; 2006 Dec; 96(6):3532-7. PubMed ID: 16956989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quasi-reversible photo-axotomy used to investigate the role of extensor muscle tension in controlling the kick motor programme of grasshoppers.
    Heitler WJ
    Eur J Neurosci; 1995 May; 7(5):981-92. PubMed ID: 7613633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Slow motor neuron stimulation of locust skeletal muscle: model and measurement.
    Wilson E; Rustighi E; Newland PL; Mace BR
    Biomech Model Mechanobiol; 2013 Jun; 12(3):581-96. PubMed ID: 22907598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of stepping velocity in a single insect leg during walking.
    Gabriel JP; Büschges A
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):251-71. PubMed ID: 17148059
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ.
    Zill SN
    J Exp Biol; 1985 May; 116():435-61. PubMed ID: 4056657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Connections between thoraco-coxal proprioceptive afferents and motor neurons in the locust.
    Wildman M
    J Exp Biol; 2000 Feb; 203(Pt 3):435-45. PubMed ID: 10637173
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Innervation pattern of a pool of nine excitatory motor neurons in the flexor tibiae muscle of a locust hind leg.
    Sasaki K; Burrows M
    J Exp Biol; 1998 May; 201 (Pt 12)():1885-93. PubMed ID: 9600870
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The central connections and actions during walking of tibial campaniform sensilla in the locust.
    Newland PL; Emptage NJ
    J Comp Physiol A; 1996 Jun; 178(6):749-62. PubMed ID: 8667289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The locust jump. I. The motor programme.
    Heitler WJ; Burrows M
    J Exp Biol; 1977 Feb; 66(1):203-19. PubMed ID: 870599
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triggering of locust jump by multimodal inhibitory interneurons.
    Pearson KG; Heitler WJ; Steeves JD
    J Neurophysiol; 1980 Feb; 43(2):257-78. PubMed ID: 6247459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel.
    Gabriel JP; Scharstein H; Schmidt J; Büschges A
    J Neurobiol; 2003 Sep; 56(3):237-51. PubMed ID: 12884263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An elaborate tension receptor system highlights sensory complexity in the hind leg of the locust.
    Matheson T; Field L
    J Exp Biol; 1995; 198(Pt 8):1673-89. PubMed ID: 9319581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A size principle for recruitment of
    Azevedo AW; Dickinson ES; Gurung P; Venkatasubramanian L; Mann RS; Tuthill JC
    Elife; 2020 Jun; 9():. PubMed ID: 32490810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3144-53. PubMed ID: 9405534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A strand receptor with a central cell body synapses upon spiking local interneurones in the locust.
    Pflüger HJ; Burrows M
    J Comp Physiol A; 1987 Mar; 160(3):295-304. PubMed ID: 3572849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional identification of the input-output transforms of mammalian motoneurones.
    Binder MD; Poliakov AV; Powers RK
    J Physiol Paris; 1999; 93(1-2):29-42. PubMed ID: 10084707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proprioceptive input patterns elevator activity in the locust flight system.
    Wolf H; Pearson KG
    J Neurophysiol; 1988 Jun; 59(6):1831-53. PubMed ID: 3404207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proprioceptive feedback in locust kicking and jumping during maturation.
    Norman AP
    J Comp Physiol A; 1996 Aug; 179(2):195-205. PubMed ID: 8765558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer).
    Baden T; Hedwig B
    J Exp Biol; 2008 Jul; 211(Pt 13):2123-33. PubMed ID: 18552302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.