BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9115179)

  • 21. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate.
    Lukacik P; Lobley CM; Bumann M; Arena de Souza V; Owens RJ; O'Toole PW; Walsh MA
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1327-34. PubMed ID: 26457526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer.
    Rogers MB; Watkins RF; Harper JT; Durnford DG; Gray MW; Keeling PJ
    BMC Evol Biol; 2007 Jun; 7():89. PubMed ID: 17562012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and properties of an engineered transketolase from maize.
    Gerhardt S; Echt S; Busch M; Freigang J; Auerbach G; Bader G; Martin WF; Bacher A; Huber R; Fischer M
    Plant Physiol; 2003 Aug; 132(4):1941-9. PubMed ID: 12913150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granule-bound starch synthase: structure, function, and phylogenetic utility.
    Mason-Gamer RJ; Weil CF; Kellogg EA
    Mol Biol Evol; 1998 Dec; 15(12):1658-73. PubMed ID: 9866201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of the evolution of the structure and function of 1-deoxy-D-xylulose-5-phosphate synthase, a key regulator of the mevalonate-independent pathway in plants.
    Krushkal J; Pistilli M; Ferrell KM; Souret FF; Weathers PJ
    Gene; 2003 Aug; 313():127-38. PubMed ID: 12957384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis of L-asparaginase from different source organisms.
    Dwivedi VD; Mishra SK
    Interdiscip Sci; 2014 Jun; 6(2):93-9. PubMed ID: 25172447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The crystal structure of human transketolase and new insights into its mode of action.
    Mitschke L; Parthier C; Schröder-Tittmann K; Coy J; Lüdtke S; Tittmann K
    J Biol Chem; 2010 Oct; 285(41):31559-70. PubMed ID: 20667822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A common structural motif in thiamin pyrophosphate-binding enzymes.
    Hawkins CF; Borges A; Perham RN
    FEBS Lett; 1989 Sep; 255(1):77-82. PubMed ID: 2792374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspartate 155 of human transketolase is essential for thiamine diphosphate-magnesium binding, and cofactor binding is required for dimer formation.
    Wang JJ; Martin PR; Singleton CK
    Biochim Biophys Acta; 1997 Sep; 1341(2):165-72. PubMed ID: 9357955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure.
    Chen A; Kroon PA; Poulter CD
    Protein Sci; 1994 Apr; 3(4):600-7. PubMed ID: 8003978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.
    Abedinia M; Layfield R; Jones SM; Nixon PF; Mattick JS
    Biochem Biophys Res Commun; 1992 Mar; 183(3):1159-66. PubMed ID: 1567394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.
    Kerk D; Silver D; Uhrig RG; Moorhead GB
    PLoS One; 2015; 10(8):e0132863. PubMed ID: 26241330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evolution of amelogenin in mammals.
    Delgado S; Girondot M; Sire JY
    J Mol Evol; 2005 Jan; 60(1):12-30. PubMed ID: 15696365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases.
    Deshpande GP; Patterton HG; Faadiel Essop M
    BMC Struct Biol; 2019 Jan; 19(1):2. PubMed ID: 30646877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases.
    Zámocký M
    Eur J Biochem; 2004 Aug; 271(16):3297-309. PubMed ID: 15291807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Some properties of multiple forms of transketolase from baker's yeast].
    Filippov MIu; Solov'eva ON; Kochetov GA
    Biokhimiia; 1995 Jul; 60(7):1089-94. PubMed ID: 7578564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.