These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9115179)

  • 21. High-resolution structures of Lactobacillus salivarius transketolase in the presence and absence of thiamine pyrophosphate.
    Lukacik P; Lobley CM; Bumann M; Arena de Souza V; Owens RJ; O'Toole PW; Walsh MA
    Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1327-34. PubMed ID: 26457526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer.
    Rogers MB; Watkins RF; Harper JT; Durnford DG; Gray MW; Keeling PJ
    BMC Evol Biol; 2007 Jun; 7():89. PubMed ID: 17562012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and properties of an engineered transketolase from maize.
    Gerhardt S; Echt S; Busch M; Freigang J; Auerbach G; Bader G; Martin WF; Bacher A; Huber R; Fischer M
    Plant Physiol; 2003 Aug; 132(4):1941-9. PubMed ID: 12913150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granule-bound starch synthase: structure, function, and phylogenetic utility.
    Mason-Gamer RJ; Weil CF; Kellogg EA
    Mol Biol Evol; 1998 Dec; 15(12):1658-73. PubMed ID: 9866201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of the evolution of the structure and function of 1-deoxy-D-xylulose-5-phosphate synthase, a key regulator of the mevalonate-independent pathway in plants.
    Krushkal J; Pistilli M; Ferrell KM; Souret FF; Weathers PJ
    Gene; 2003 Aug; 313():127-38. PubMed ID: 12957384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico analysis of L-asparaginase from different source organisms.
    Dwivedi VD; Mishra SK
    Interdiscip Sci; 2014 Jun; 6(2):93-9. PubMed ID: 25172447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The crystal structure of human transketolase and new insights into its mode of action.
    Mitschke L; Parthier C; Schröder-Tittmann K; Coy J; Lüdtke S; Tittmann K
    J Biol Chem; 2010 Oct; 285(41):31559-70. PubMed ID: 20667822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A common structural motif in thiamin pyrophosphate-binding enzymes.
    Hawkins CF; Borges A; Perham RN
    FEBS Lett; 1989 Sep; 255(1):77-82. PubMed ID: 2792374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspartate 155 of human transketolase is essential for thiamine diphosphate-magnesium binding, and cofactor binding is required for dimer formation.
    Wang JJ; Martin PR; Singleton CK
    Biochim Biophys Acta; 1997 Sep; 1341(2):165-72. PubMed ID: 9357955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure.
    Chen A; Kroon PA; Poulter CD
    Protein Sci; 1994 Apr; 3(4):600-7. PubMed ID: 8003978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.
    Abedinia M; Layfield R; Jones SM; Nixon PF; Mattick JS
    Biochem Biophys Res Commun; 1992 Mar; 183(3):1159-66. PubMed ID: 1567394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.
    Kerk D; Silver D; Uhrig RG; Moorhead GB
    PLoS One; 2015; 10(8):e0132863. PubMed ID: 26241330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evolution of amelogenin in mammals.
    Delgado S; Girondot M; Sire JY
    J Mol Evol; 2005 Jan; 60(1):12-30. PubMed ID: 15696365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases.
    Deshpande GP; Patterton HG; Faadiel Essop M
    BMC Struct Biol; 2019 Jan; 19(1):2. PubMed ID: 30646877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases.
    Zámocký M
    Eur J Biochem; 2004 Aug; 271(16):3297-309. PubMed ID: 15291807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Some properties of multiple forms of transketolase from baker's yeast].
    Filippov MIu; Solov'eva ON; Kochetov GA
    Biokhimiia; 1995 Jul; 60(7):1089-94. PubMed ID: 7578564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.