BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 9115241)

  • 1. Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II.
    Moyers JS; Bilan PJ; Zhu J; Kahn CR
    J Biol Chem; 1997 May; 272(18):11832-9. PubMed ID: 9115241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calmodulin binds to and inhibits GTP binding of the ras-like GTPase Kir/Gem.
    Fischer R; Wei Y; Anagli J; Berchtold MW
    J Biol Chem; 1996 Oct; 271(41):25067-70. PubMed ID: 8810259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phosphorylation on function of the Rad GTPase.
    Moyers JS; Zhu J; Kahn CR
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):609-14. PubMed ID: 9677319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The regulatory region of calcium/calmodulin-dependent protein kinase I contains closely associated autoinhibitory and calmodulin-binding domains.
    Yokokura H; Picciotto MR; Nairn AC; Hidaka H
    J Biol Chem; 1995 Oct; 270(40):23851-9. PubMed ID: 7559563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases.
    Finlin BS; Shao H; Kadono-Okuda K; Guo N; Andres DA
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):223-31. PubMed ID: 10727423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism.
    Clapperton JA; Martin SR; Smerdon SJ; Gamblin SJ; Bayley PM
    Biochemistry; 2002 Dec; 41(50):14669-79. PubMed ID: 12475216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity.
    Béguin P; Mahalakshmi RN; Nagashima K; Cher DH; Takahashi A; Yamada Y; Seino Y; Hunziker W
    J Cell Sci; 2005 May; 118(Pt 9):1923-34. PubMed ID: 15860732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin.
    Takezawa D; Ramachandiran S; Paranjape V; Poovaiah BW
    J Biol Chem; 1996 Apr; 271(14):8126-32. PubMed ID: 8626500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium binding and conformational properties of calmodulin complexed with peptides derived from myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP).
    Porumb T; Crivici A; Blackshear PJ; Ikura M
    Eur Biophys J; 1997; 25(4):239-47. PubMed ID: 9112755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Rad, a new member of Ras/GTPase superfamily, and its regulation by a unique GTPase-activating protein (GAP)-like activity.
    Zhu J; Reynet C; Caldwell JS; Kahn CR
    J Biol Chem; 1995 Mar; 270(9):4805-12. PubMed ID: 7876254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways.
    Fan WT; Koch CA; de Hoog CL; Fam NP; Moran MF
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):935-8. PubMed ID: 9707409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ca2+-dependent binding of calmodulin to an N-terminal motif of the heterotrimeric G protein beta subunit.
    Liu M; Yu B; Nakanishi O; Wieland T; Simon M
    J Biol Chem; 1997 Jul; 272(30):18801-7. PubMed ID: 9228054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine to glutamine substitutions in the C-terminal domain of calmodulin impair the activation of three protein kinases.
    Chin D; Means AR
    J Biol Chem; 1996 Nov; 271(48):30465-71. PubMed ID: 8940012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of calmodulin trapping by calcium/calmodulin-dependent protein kinase II.
    Singla SI; Hudmon A; Goldberg JM; Smith JL; Schulman H
    J Biol Chem; 2001 Aug; 276(31):29353-60. PubMed ID: 11384969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic characterization of the interaction between calmodulin-dependent protein kinase I and calmodulin.
    Gomes AV; Barnes JA; Vogel HJ
    Arch Biochem Biophys; 2000 Jul; 379(1):28-36. PubMed ID: 10864438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus.
    Sun L; Bittner MA; Holz RW
    J Biol Chem; 2003 Oct; 278(40):38301-9. PubMed ID: 12871946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway.
    Ward Y; Yap SF; Ravichandran V; Matsumura F; Ito M; Spinelli B; Kelly K
    J Cell Biol; 2002 Apr; 157(2):291-302. PubMed ID: 11956230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I.
    Chin D; Winkler KE; Means AR
    J Biol Chem; 1997 Dec; 272(50):31235-40. PubMed ID: 9395448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.