These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1004 related articles for article (PubMed ID: 9115352)
1. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples. Radhakrishnan I; Patel DJ Structure; 1994 Jan; 2(1):17-32. PubMed ID: 8075980 [TBL] [Abstract][Full Text] [Related]
3. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
4. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif. Stilz HU; Dervan PB Biochemistry; 1993 Mar; 32(9):2177-85. PubMed ID: 8443159 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
6. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Faucon B; Mergny JL; Héléne C Nucleic Acids Res; 1996 Aug; 24(16):3181-8. PubMed ID: 8774898 [TBL] [Abstract][Full Text] [Related]
7. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
8. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Gowers DM; Fox KR Nucleic Acids Res; 1997 Oct; 25(19):3787-94. PubMed ID: 9380499 [TBL] [Abstract][Full Text] [Related]
9. Targeting neighbouring poly(purine.pyrimidine) sequences located in the human bcr promoter by triplex-forming oligonucleotides. Xodo LE; Rathinavelan T; Quadrifoglio F; Manzini G; Yathindra N Eur J Biochem; 2001 Feb; 268(3):656-64. PubMed ID: 11168404 [TBL] [Abstract][Full Text] [Related]
10. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Pilch DS; Levenson C; Shafer RH Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618 [TBL] [Abstract][Full Text] [Related]
11. Solution structure of a purine.purine.pyrimidine DNA triplex containing G.GC and T.AT triples. Radhakrishnan I; Patel DJ Structure; 1993 Oct; 1(2):135-52. PubMed ID: 8069626 [TBL] [Abstract][Full Text] [Related]
12. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. Radhakrishnan I; de los Santos C; Patel DJ J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of a pyrimidine-purine-pyrimidine triplex containing the sequence-specific intercalating non-natural base D3. Wang E; Koshlap KM; Gillespie P; Dervan PB; Feigon J J Mol Biol; 1996 Apr; 257(5):1052-69. PubMed ID: 8632468 [TBL] [Abstract][Full Text] [Related]
14. Triple helical structures involving inosine: there is a penalty for promiscuity. Mills M; Völker J; Klump HH Biochemistry; 1996 Oct; 35(41):13338-44. PubMed ID: 8873600 [TBL] [Abstract][Full Text] [Related]
15. The effect of amino groups on the stability of DNA duplexes and triplexes based on purines derived from inosine. Cubero E; Güimil-García R; Luque FJ; Eritja R; Orozco M Nucleic Acids Res; 2001 Jun; 29(12):2522-34. PubMed ID: 11410660 [TBL] [Abstract][Full Text] [Related]
16. Recognition of a guanine-cytosine base pair by 8-oxoadenine. Miller PS; Bhan P; Cushman CD; Trapane TL Biochemistry; 1992 Jul; 31(29):6788-93. PubMed ID: 1637814 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of an O6-[4-oxo-4-(3-pyridyl)butyl]guanine adduct in an 11 mer DNA duplex: evidence for formation of a base triplex. Peterson LA; Vu C; Hingerty BE; Broyde S; Cosman M Biochemistry; 2003 Nov; 42(45):13134-44. PubMed ID: 14609323 [TBL] [Abstract][Full Text] [Related]
18. Sequence-selective intercalation of antitumour bis-naphthalimides into DNA. Evidence for an approach via the major groove. Bailly C; Braña M; Waring MJ Eur J Biochem; 1996 Aug; 240(1):195-208. PubMed ID: 8797854 [TBL] [Abstract][Full Text] [Related]
19. Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Huang CY; Bi G; Miller PS Nucleic Acids Res; 1996 Jul; 24(13):2606-13. PubMed ID: 8692703 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the base pairing properties of a series of nitroazole nucleobase analogs in the oligodeoxyribonucleotide sequence 5'-d(CGCXAATTYGCG)-3'. Bergstrom DE; Zhang P; Johnson WT Nucleic Acids Res; 1997 May; 25(10):1935-42. PubMed ID: 9115360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]