These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides. Cassidy SA; Strekowski L; Wilson WD; Fox KR Biochemistry; 1994 Dec; 33(51):15338-47. PubMed ID: 7803397 [TBL] [Abstract][Full Text] [Related]
9. Energetics of strand-displacement reactions in triple helices: a spectroscopic study. Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941 [TBL] [Abstract][Full Text] [Related]
10. Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation. Cheng AJ; Van Dyke MW Nucleic Acids Res; 1994 Nov; 22(22):4742-7. PubMed ID: 7984426 [TBL] [Abstract][Full Text] [Related]
11. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives. Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007 [TBL] [Abstract][Full Text] [Related]
12. Anti-gene effect in live cells of AG motif triplex-forming oligonucleotides containing an increasing number of phosphorothioate linkages. Cogoi S; Rapozzi V; Quadrifoglio F; Xodo L Biochemistry; 2001 Feb; 40(5):1135-43. PubMed ID: 11170438 [TBL] [Abstract][Full Text] [Related]
13. Extension of the range of DNA sequences available for triple helix formation: stabilization of mismatched triplexes by acridine-containing oligonucleotides. Kukreti S; Sun JS; Garestier T; Hélène C Nucleic Acids Res; 1997 Nov; 25(21):4264-70. PubMed ID: 9336456 [TBL] [Abstract][Full Text] [Related]
14. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Faucon B; Mergny JL; Héléne C Nucleic Acids Res; 1996 Aug; 24(16):3181-8. PubMed ID: 8774898 [TBL] [Abstract][Full Text] [Related]
15. Solution structure of a purine.purine.pyrimidine DNA triplex containing G.GC and T.AT triples. Radhakrishnan I; Patel DJ Structure; 1993 Oct; 1(2):135-52. PubMed ID: 8069626 [TBL] [Abstract][Full Text] [Related]
16. Effect of cations on purine.purine.pyrimidine triple helix formation in mixed-valence salt solutions. Floris R; Scaggiante B; Manzini G; Quadrifoglio F; Xodo LE Eur J Biochem; 1999 Mar; 260(3):801-9. PubMed ID: 10103010 [TBL] [Abstract][Full Text] [Related]
17. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex. Gondeau C; Maurizot JC; Durand M Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765 [TBL] [Abstract][Full Text] [Related]
19. Site-specific intercalation at the triplex-duplex junction induces a conformational change which is detectable by hypersensitivity to diethylpyrocarbonate. Collier DA; Mergny JL; Thuong NT; Helene C Nucleic Acids Res; 1991 Aug; 19(15):4219-24. PubMed ID: 1870975 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene promotor. Svinarchuk F; Debin A; Bertrand JR; Malvy C Nucleic Acids Res; 1996 Jan; 24(2):295-302. PubMed ID: 8628653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]