These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 9115367)

  • 21. Solution structure of a pyrimidine.purine.pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples.
    Radhakrishnan I; Patel DJ
    Structure; 1994 Jan; 2(1):17-32. PubMed ID: 8075980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides.
    Olivas WM; Maher LJ
    Biochemistry; 1995 Jan; 34(1):278-84. PubMed ID: 7819208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand.
    Fox KR; Flashman E; Gowers D
    Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation.
    Dagle JM; Weeks DL
    Nucleic Acids Res; 1996 Jun; 24(11):2143-9. PubMed ID: 8668547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif.
    Marfurt J; Parel SP; Leumann CJ
    Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation.
    Cheng AJ; Van Dyke MW
    Nucleic Acids Res; 1993 Dec; 21(24):5630-5. PubMed ID: 8284208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antiparallel polypurine phosphorothioate oligonucleotides form stable triplexes with the rat alpha1(I) collagen gene promoter and inhibit transcription in cultured rat fibroblasts.
    Joseph J; Kandala JC; Veerapanane D; Weber KT; Guntaka RV
    Nucleic Acids Res; 1997 Jun; 25(11):2182-8. PubMed ID: 9153319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to overcome potassium-mediated inhibition of triplex formation.
    Svinarchuk F; Cherny D; Debin A; Delain E; Malvy C
    Nucleic Acids Res; 1996 Oct; 24(19):3858-65. PubMed ID: 8871568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triplex formation on DNA targets: how to choose the oligonucleotide.
    Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB
    Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-free parallel triple-stranded DNA complex formation.
    Shchyolkina AK; Timofeev EN; Lysov YP; Florentiev VL; Jovin TM; Arndt-Jovin DJ
    Nucleic Acids Res; 2001 Feb; 29(4):986-95. PubMed ID: 11160932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helix-stabilizing compounds CC-1065 and U-71,184 bind to RNA-DNA and DNA-DNA duplexes containing modified internucleotide linkages and stabilize duplexes against thermal melting.
    Kim DY; Shih DS; Cho DY; Swenson DH
    Antisense Res Dev; 1995; 5(1):49-57. PubMed ID: 7542048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectroscopic investigation of an intramolecular DNA triplex containing both G.G:C and T.A:T triads and its complex with netropsin.
    Gondeau C; Maurizot JC; Durand M
    J Biomol Struct Dyn; 1998 Jun; 15(6):1133-45. PubMed ID: 9669558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and properties of triple helix-forming oligodeoxyribonucleotides containing 7-chloro-7-deaza-2'-deoxyguanosine.
    Aubert Y; Perrouault L; Hélène C; Giovannangeli C; Asseline U
    Bioorg Med Chem; 2001 Jun; 9(6):1617-24. PubMed ID: 11408181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
    Evertsz EM; Rippe K; Jovin TM
    Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides.
    Fox KR
    Nucleic Acids Res; 1994 Jun; 22(11):2016-21. PubMed ID: 8029007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine.
    Giovannangéli C; Rougée M; Garestier T; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8631-5. PubMed ID: 1528873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting of Pu.Py Duplexes by GA and GT Rich Oligonucleotides on Microchip and in Solution.
    Khomyakova E; Liquier J; Huynh-Dinh T; Florentiev V; Mirzabekov A; Taillandier E
    J Biomol Struct Dyn; 2000; 17 Suppl 1():227-35. PubMed ID: 22607429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternate-strand DNA triple-helix formation using short acridine-linked oligonucleotides.
    Washbrook E; Fox KR
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):569-75. PubMed ID: 8043005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.