BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 9115369)

  • 1. Analyses of frameshifting at UUU-pyrimidine sites.
    Schwartz R; Curran JF
    Nucleic Acids Res; 1997 May; 25(10):2005-11. PubMed ID: 9115369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site.
    Curran JF
    Nucleic Acids Res; 1993 Apr; 21(8):1837-43. PubMed ID: 8493101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli.
    Fu C; Parker J
    Mol Gen Genet; 1994 May; 243(4):434-41. PubMed ID: 7515462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short spacing between the Shine-Dalgarno sequence and P codon destabilizes codon-anticodon pairing in the P site to promote +1 programmed frameshifting.
    Devaraj A; Fredrick K
    Mol Microbiol; 2010 Dec; 78(6):1500-9. PubMed ID: 21143320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the E site during RF2 programmed frameshifting.
    Sanders CL; Curran JF
    RNA; 2007 Sep; 13(9):1483-91. PubMed ID: 17660276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding with the A:I wobble pair is inefficient.
    Curran JF
    Nucleic Acids Res; 1995 Feb; 23(4):683-8. PubMed ID: 7534909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer RNA modification status influences retroviral ribosomal frameshifting.
    Carlson BA; Kwon SY; Chamorro M; Oroszlan S; Hatfield DL; Lee BJ
    Virology; 1999 Mar; 255(1):2-8. PubMed ID: 10049815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift.
    Larsen B; Wills NM; Gesteland RF; Atkins JF
    J Bacteriol; 1994 Nov; 176(22):6842-51. PubMed ID: 7961443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of +1 frameshift by polyamines during translation of polypeptide release factor 2 in Escherichia coli.
    Higashi K; Kashiwagi K; Taniguchi S; Terui Y; Yamamoto K; Ishihama A; Igarashi K
    J Biol Chem; 2006 Apr; 281(14):9527-37. PubMed ID: 16476727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic control of -1 programmed ribosomal frameshifting.
    Bock LV; Caliskan N; Korniy N; Peske F; Rodnina MV; Grubmüller H
    Nat Commun; 2019 Oct; 10(1):4598. PubMed ID: 31601802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift.
    Spanjaard RA; van Duin J
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7967-71. PubMed ID: 3186700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seven, eight and nine-membered anticodon loop mutants of tRNA(2Arg) which cause +1 frameshifting. Tolerance of DHU arm and other secondary mutations.
    Tuohy TM; Thompson S; Gesteland RF; Atkins JF
    J Mol Biol; 1992 Dec; 228(4):1042-54. PubMed ID: 1474576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.
    Sipley J; Goldman E
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2315-9. PubMed ID: 8460140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.
    Márquez V; Wilson DN; Tate WP; Triana-Alonso F; Nierhaus KH
    Cell; 2004 Jul; 118(1):45-55. PubMed ID: 15242643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of programmed frameshifting during translation of
    Naeem FM; Gemler BT; McNutt ZA; Bundschuh R; Fredrick K
    RNA; 2024 Jan; 30(2):136-148. PubMed ID: 37949662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal frameshifting in response to hypomodified tRNAs in Xenopus oocytes.
    Carlson BA; Lee BJ; Hatfield DL
    Biochem Biophys Res Commun; 2008 Oct; 375(1):86-90. PubMed ID: 18675785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting.
    Huang WP; Cho CP; Chang KY
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.
    Mathew SF; Crowe-McAuliffe C; Graves R; Cardno TS; McKinney C; Poole ES; Tate WP
    PLoS One; 2015; 10(3):e0122176. PubMed ID: 25807539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.