These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9115372)

  • 1. Angle and locus of the bend induced by the msp I DNA methyltransferase in a sequence-specific complex with DNA.
    Dubey AK; Bhattacharya SK
    Nucleic Acids Res; 1997 May; 25(10):2025-9. PubMed ID: 9115372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA bending induced by DNA (cytosine-5) methyltransferases.
    Raskó T; Finta C; Kiss A
    Nucleic Acids Res; 2000 Aug; 28(16):3083-91. PubMed ID: 10931923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of DNA minor groove interactions in substrate recognition by the M.SinI and M.EcoRII DNA (cytosine-5) methyltransferases.
    Kiss A; Pósfai G; Zsurka G; Raskó T; Venetianer P
    Nucleic Acids Res; 2001 Aug; 29(15):3188-94. PubMed ID: 11470876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 7-Deazaadenosylaziridine Cofactor for Sequence-Specific Labeling of DNA by the DNA Cytosine-C5 Methyltransferase M.HhaI.
    Kunkel F; Lurz R; Weinhold E
    Molecules; 2015 Nov; 20(11):20805-22. PubMed ID: 26610450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center.
    Mi S; Roberts RJ
    Nucleic Acids Res; 1993 May; 21(10):2459-64. PubMed ID: 8506140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine.
    Sheikhnejad G; Brank A; Christman JK; Goddard A; Alvarez E; Ford H; Marquez VE; Marasco CJ; Sufrin JR; O'gara M; Cheng X
    J Mol Biol; 1999 Feb; 285(5):2021-34. PubMed ID: 9925782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-specific DNA binding by the MspI DNA methyltransferase.
    Dubey AK; Roberts RJ
    Nucleic Acids Res; 1992 Jun; 20(12):3167-73. PubMed ID: 1535704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alw26I, Eco31I and Esp3I--type IIs methyltransferases modifying cytosine and adenine in complementary strands of the target DNA.
    Bitinaite J; Maneliene Z; Menkevicius S; Klimasauskas S; Butkus V; Janulaitis A
    Nucleic Acids Res; 1992 Oct; 20(19):4981-5. PubMed ID: 1408816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the MvaI and SsoII methyltransferases with DNAs altered at the central base pair of the recognition sequence.
    Brevnov MG; Kubareva EA; Romanova EA; Volkov EM; Karyagina AS; Nikolskaya II; Gromova ES
    Gene; 1995 May; 157(1-2):149-52. PubMed ID: 7607480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase.
    Huang N; Banavali NK; MacKerell AD
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):68-73. PubMed ID: 12506195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor.
    Ortega ME; Catalano CE
    Biochemistry; 2006 Apr; 45(16):5180-9. PubMed ID: 16618107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sequence of the CCGG recognizing DNA methyltransferase M.BsuFI: implications for the analysis of sequence recognition by cytosine DNA methyltransferases.
    Walter J; Noyer-Weidner M; Trautner TA
    EMBO J; 1990 Apr; 9(4):1007-13. PubMed ID: 2108858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. M.(phi)BssHII, a novel cytosine-C5-DNA-methyltransferase with target-recognizing domains at separated locations of the enzyme.
    Sethmann S; Ceglowski P; Willert J; Iwanicka-Nowicka R; Trautner TA; Walter J
    EMBO J; 1999 Jun; 18(12):3502-8. PubMed ID: 10369689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DsaV methyltransferase and its isoschizomers contain a conserved segment that is similar to the segment in Hhai methyltransferase that is in contact with DNA bases.
    Gopal J; Yebra MJ; Bhagwat AS
    Nucleic Acids Res; 1994 Oct; 22(21):4482-8. PubMed ID: 7971279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient DNA binding by a proteolytic peptide from m5C-DNA methyltransferase MspI.
    Bhattacharya SK; Dubey AK
    J Biochem Mol Biol Biophys; 2002 Oct; 6(5):357-64. PubMed ID: 12385973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetry elements in DNA structure important for recognition/methylation by DNA [amino]-methyltransferases.
    Zinoviev VV; Yakishchik SI; Evdokimov AA; Malygin EG; Hattman S
    Nucleic Acids Res; 2004; 32(13):3930-4. PubMed ID: 15280508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pair of single-strand and double-strand DNA cytosine-N4 methyltransferases from Bacillus centrosporus.
    Merkiene E; Vilkaitis G; Klimasauskas S
    Biol Chem; 1998; 379(4-5):569-71. PubMed ID: 9628356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endonuclease isoschizomers, SmaI and XmaI, bend DNA in opposite orientations.
    Withers BE; Dunbar JC
    Nucleic Acids Res; 1993 Jun; 21(11):2571-7. PubMed ID: 8332454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HhaI methyltransferase flips its target base out of the DNA helix.
    Klimasauskas S; Kumar S; Roberts RJ; Cheng X
    Cell; 1994 Jan; 76(2):357-69. PubMed ID: 8293469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity modification of EcoRII DNA methyltransferase by the dialdehyde-substituted DNA duplexes: mapping the enzyme region that interacts with DNA.
    Gritsenko OM; Koudan EV; Mikhailov SN; Ermolinsky BS; Van Aerschot A; Herdewijn P; Gromova ES
    Nucleosides Nucleotides Nucleic Acids; 2002; 21(11-12):753-64. PubMed ID: 12537018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.