BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 9115995)

  • 21. The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells.
    Hasinoff BB; Begleiter A
    Free Radic Res; 2006 Sep; 40(9):974-8. PubMed ID: 17015278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible modification of cysteine residues of NADPH-cytochrome P-450 reductase.
    Yelinova VI; Weiner LM; Slepneva IA; Levina AS
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1044-8. PubMed ID: 8391797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates.
    Stoyanovsky D; Yalowich J; Gantchev T; Kagan V
    Free Radic Res Commun; 1993; 19(6):371-86. PubMed ID: 8168727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron transfer between protonated and unprotonated phenoxyl radicals.
    Omura K
    J Org Chem; 2008 Feb; 73(3):858-67. PubMed ID: 18179228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.
    Kagan VE; Yalowich JC; Borisenko GG; Tyurina YY; Tyurin VA; Thampatty P; Fabisiak JP
    Mol Pharmacol; 1999 Sep; 56(3):494-506. PubMed ID: 10462537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin E analogue Trolox C. E.s.r. and pulse-radiolysis studies of free-radical reactions.
    Davies MJ; Forni LG; Willson RL
    Biochem J; 1988 Oct; 255(2):513-22. PubMed ID: 2849418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myeloperoxidase-catalyzed phenoxyl radicals of vitamin E homologue, 2,2,5,7,8-pentamethyl- 6-hydroxychromane, do not induce oxidative stress in live HL-60 cells.
    Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Tyurina YY; Yalowich JC
    Biochem Biophys Res Commun; 2000 Apr; 270(3):1086-92. PubMed ID: 10772954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion.
    Murray AR; Kisin E; Castranova V; Kommineni C; Gunther MR; Shvedova AA
    Chem Res Toxicol; 2007 Dec; 20(12):1769-77. PubMed ID: 17922553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase.
    Chung N; Aust SD
    Arch Biochem Biophys; 1995 Feb; 316(2):733-7. PubMed ID: 7864628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Persistent hydrogen-bonded and non-hydrogen-bonded phenoxyl radicals.
    Wanke R; Benisvy L; Kuznetsov ML; da Silva MF; Pombeiro AJ
    Chemistry; 2011 Oct; 17(42):11882-92. PubMed ID: 21898619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recycling and redox cycling of phenolic antioxidants.
    Kagan VE; Tyurina YY
    Ann N Y Acad Sci; 1998 Nov; 854():425-34. PubMed ID: 9928449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DT-diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene.
    Smart RC; Zannoni VG
    Mol Pharmacol; 1984 Jul; 26(1):105-11. PubMed ID: 6749127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation and recycling of radicals from phenolic antioxidants.
    Kagan VE; Serbinova EA; Packer L
    Arch Biochem Biophys; 1990 Jul; 280(1):33-9. PubMed ID: 2162153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of naturally occurring phenols in inducing oscillations in the peroxidase-oxidase reaction.
    Hauser MJ; Olsen LF
    Biochemistry; 1998 Feb; 37(8):2458-69. PubMed ID: 9485394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative and reductive metabolism of tris(p-carboxyltetrathiaaryl)methyl radicals by liver microsomes.
    Decroos C; Li Y; Bertho G; Frapart Y; Mansuy D; Boucher JL
    Chem Res Toxicol; 2009 Jul; 22(7):1342-50. PubMed ID: 19545126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system.
    Hanukoglu I; Rapoport R; Weiner L; Sklan D
    Arch Biochem Biophys; 1993 Sep; 305(2):489-98. PubMed ID: 8396893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.