BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9115997)

  • 21. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E; Huber-Wunderlich M; Glockshuber R
    Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of lens glycolytic pathway by thioltransferase.
    Qiao F; Xing K; Lou MF
    Exp Eye Res; 2000 Jun; 70(6):745-53. PubMed ID: 10843779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nuclear magnetic resonance study of the thioltransferase-catalyzed glutathione/glutathione disulfide interchange reaction.
    Rabenstein DL; Millis KK
    Biochim Biophys Acta; 1995 May; 1249(1):29-36. PubMed ID: 7766681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues.
    Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP
    Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of thioltransferase (glutaredoxin) in ocular tissues.
    Wu F; Wang GM; Raghavachari N; Lou MF
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):476-80. PubMed ID: 9501856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.
    Knap AK; Pratt RF
    Proteins; 1989; 6(3):316-23. PubMed ID: 2695930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a.
    Patskovsky YV; Patskovska LN; Listowsky I
    Biochemistry; 1999 Jan; 38(4):1193-202. PubMed ID: 9930979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction.
    Starke DW; Chock PB; Mieyal JJ
    J Biol Chem; 2003 Apr; 278(17):14607-13. PubMed ID: 12556467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Egg white sulfhydryl oxidase: kinetic mechanism of the catalysis of disulfide bond formation.
    Hoober KL; Thorpe C
    Biochemistry; 1999 Mar; 38(10):3211-7. PubMed ID: 10074377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiol ester hydrolysis catalyzed by glutathione S-transferase A1-1.
    Dietze EC; Grillo MP; Kalhorn T; Nieslanik BS; Jochheim CM; Atkins WM
    Biochemistry; 1998 Oct; 37(42):14948-57. PubMed ID: 9778372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rat brain thioltransferase: regional distribution, immunological characterization, and localization by fluorescent in situ hybridization.
    Balijepalli S; Tirumalai PS; Swamy KV; Boyd MR; Mieyal JJ; Ravindranath V
    J Neurochem; 1999 Mar; 72(3):1170-8. PubMed ID: 10037490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes.
    Xu DP; Washburn MP; Sun GP; Wells WW
    Biochem Biophys Res Commun; 1996 Apr; 221(1):117-21. PubMed ID: 8660320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione dependent modification of bovine lens aldose reductase.
    Cappiello M; Voltarelli M; Giannessi M; Cecconi I; Camici G; Manao G; Del Corso A; Mura U
    Exp Eye Res; 1994 Apr; 58(4):491-501. PubMed ID: 7925685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH dependencies of the Tetrahymena ribozyme reveal an unconventional origin of an apparent pKa.
    Knitt DS; Herschlag D
    Biochemistry; 1996 Feb; 35(5):1560-70. PubMed ID: 8634287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thioltransferase can utilize cysteamine as same as glutathione as a reductant during the restoration of cystamine-treated glucose 6-phosphate dehydrogenase activity.
    Terada T
    Biochem Mol Biol Int; 1994 Oct; 34(4):723-7. PubMed ID: 7866298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pKa, and thiol concentration.
    Gough JD; Lees WJ
    J Biotechnol; 2005 Feb; 115(3):279-90. PubMed ID: 15639090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of thioltransferase and thioredoxin/thioredoxin reductase systems in cultured porcine lenses under oxidative stress.
    Moon S; Fernando MR; Lou MF
    Invest Ophthalmol Vis Sci; 2005 Oct; 46(10):3783-9. PubMed ID: 16186363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General specificity of cytoplasmic thioltransferase (thiol:disulfide oxidoreductase) from rat liver for thiol and disulfide substrates.
    Axelsson K; Mannervik B
    Biochim Biophys Acta; 1980 Jun; 613(2):324-36. PubMed ID: 6934831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A classical enzyme active center motif lacks catalytic competence until modulated electrostatically.
    Pinitglang S; Watts AB; Patel M; Reid JD; Noble MA; Gul S; Bokth A; Naeem A; Patel H; Thomas EW; Sreedharan SK; Verma C; Brocklehurst K
    Biochemistry; 1997 Aug; 36(33):9968-82. PubMed ID: 9254592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.