These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 9116052)
1. The site for GTP hydrolysis on the archaeal elongation factor 2 is unmasked by aliphatic alcohols. Raimo G; Masullo M; Scarano G; Bocchini V Biochimie; 1996; 78(10):832-7. PubMed ID: 9116052 [TBL] [Abstract][Full Text] [Related]
2. Studies on the polypeptide elongation factor 2 from Sulfolobus solfataricus. Interaction with guanosine nucleotides and GTPase activity stimulated by ribosomes. Raimo G; Masullo M; Bocchini V J Biol Chem; 1995 Sep; 270(36):21082-5. PubMed ID: 7673137 [TBL] [Abstract][Full Text] [Related]
3. The A26G replacement in the consensus sequence A-X-X-X-X-G-K-[T,S] of the guanine nucleotide binding site activates the intrinsic GTPase of the elongation factor 2 from the archaeon Sulfolobus solfataricus. De Vendittis E; Adinolfi BS; Amatruda MR; Raimo G; Masullo M; Bocchini V Eur J Biochem; 1999 Jun; 262(2):600-5. PubMed ID: 10336648 [TBL] [Abstract][Full Text] [Related]
4. The elongation factor G carries a catalytic site for GTP hydrolysis, which is revealed by using 2-propanol in the absence of ribosomes. De Vendittis E; Masullo M; Bocchini V J Biol Chem; 1986 Apr; 261(10):4445-50. PubMed ID: 3007457 [TBL] [Abstract][Full Text] [Related]
5. Archaebacterial elongation factor 1 alpha carries the catalytic site for GTP hydrolysis. Masullo M; De Vendittis E; Bocchini V J Biol Chem; 1994 Aug; 269(32):20376-9. PubMed ID: 8051132 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2. Nygård O; Nilsson L Eur J Biochem; 1989 Feb; 179(3):603-8. PubMed ID: 2537725 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Rodnina MV; Savelsbergh A; Katunin VI; Wintermeyer W Nature; 1997 Jan; 385(6611):37-41. PubMed ID: 8985244 [TBL] [Abstract][Full Text] [Related]
9. G13A substitution affects the biochemical and physical properties of the elongation factor 1 alpha. A reduced intrinsic GTPase activity is partially restored by kirromycin. Masullo M; Cantiello P; de Paola B; Catanzano F; Arcari P; Bocchini V Biochemistry; 2002 Jan; 41(2):628-33. PubMed ID: 11781103 [TBL] [Abstract][Full Text] [Related]
10. Properties of truncated forms of the elongation factor 1alpha from the archaeon Sulfolobus solfataricus. Masullo M; Ianniciello G; Arcari P; Bocchini V Eur J Biochem; 1997 Jan; 243(1-2):468-73. PubMed ID: 9030774 [TBL] [Abstract][Full Text] [Related]
11. A chimeric elongation factor containing the putative guanine nucleotide binding domain of archaeal EF-1 alpha and the M and C domains of eubacterial EF-Tu. Arcari P; Masullo M; Arcucci A; Ianniciello G; de Paola B; Bocchini V Biochemistry; 1999 Sep; 38(38):12288-95. PubMed ID: 10493796 [TBL] [Abstract][Full Text] [Related]
12. Archaeal elongation factor 1 beta is a dimer. Primary structure, molecular and biochemical properties. Raimo G; Masullo M; Savino G; Scarano G; Ianniciello G; Parente A; Bocchini V Biochim Biophys Acta; 1996 Mar; 1293(1):106-12. PubMed ID: 8652615 [TBL] [Abstract][Full Text] [Related]
13. Expression in Escherichia coli of the elongation factor 1beta gene and its nucleotide T160C mutant from the archaeon Sulfolobus solfataricus. Ianniciello G; Masullo M; Raimo G; Arcari P; Bocchini V Protein Expr Purif; 1998 Feb; 12(1):1-6. PubMed ID: 9473450 [TBL] [Abstract][Full Text] [Related]
14. Fusidic and helvolic acid inhibition of elongation factor 2 from the archaeon Sulfolobus solfataricus. De Vendittis E; De Paola B; Gogliettino MA; Adinolfi BS; Fiengo A; Duvold T; Bocchini V Biochemistry; 2002 Dec; 41(50):14879-84. PubMed ID: 12475236 [TBL] [Abstract][Full Text] [Related]
16. Effect of ADP-ribosylation and phosphorylation on the interaction of elongation factor 2 with guanylic nucleotides. Marzouki A; Sontag B; Lavergne JP; Vidonne C; Reboud JP; Reboud AM Biochimie; 1991; 73(7-8):1151-6. PubMed ID: 1742357 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin. Crechet JB; Parmeggiani A Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979 [TBL] [Abstract][Full Text] [Related]
18. Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation. Martemyanov KA; Gudkov AT FEBS Lett; 1999 Jun; 452(3):155-9. PubMed ID: 10386581 [TBL] [Abstract][Full Text] [Related]
19. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
20. The role of guanosine 5'-triphosphate in polypeptide chain elongation. Kaziro Y Biochim Biophys Acta; 1978 Sep; 505(1):95-127. PubMed ID: 361078 [No Abstract] [Full Text] [Related] [Next] [New Search]