BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 9116076)

  • 21. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements.
    Wang X
    Biol Cybern; 1999 Jun; 80(6):449-63. PubMed ID: 10420570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.
    Kudo N; Choi K; Kagawa T; Uno Y
    Neural Comput; 2016 May; 28(5):950-69. PubMed ID: 26942751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is equilibrium point control feasible for fast goal-directed single-joint movements?
    Kistemaker DA; Van Soest AJ; Bobbert MF
    J Neurophysiol; 2006 May; 95(5):2898-912. PubMed ID: 16436480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-joint dynamics and the development of movement control.
    Otten E
    Neural Plast; 2005; 12(2-3):89-98; discussion 263-72. PubMed ID: 16097477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human arm stiffness and equilibrium-point trajectory during multi-joint movement.
    Gomi H; Kawato M
    Biol Cybern; 1997 Mar; 76(3):163-71. PubMed ID: 9151414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor control of voluntary arm movements. Kinematic and modelling study.
    Corradini ML; Gentilucci M; Leo T; Rizzolatti G
    Biol Cybern; 1992; 67(4):347-60. PubMed ID: 1515513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The human arm as a redundant manipulator: the control of path and joint angles.
    Cruse H; Brüwer M
    Biol Cybern; 1987; 57(1-2):137-44. PubMed ID: 3620542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
    Suzuki M; Yamazaki Y
    J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How the brain generates movement.
    Rokni U; Sompolinsky H
    Neural Comput; 2012 Feb; 24(2):289-331. PubMed ID: 22023199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Cascade Neural Network Model and a Speed-Accuracy Trade-Off of Arm Movement.
    Hirayama M; Kawato M; Jordan MI
    J Mot Behav; 1993 Sep; 25(3):162-174. PubMed ID: 12581987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices.
    Biess A; Nagurka M; Flash T
    Biol Cybern; 2006 Jul; 95(1):31-53. PubMed ID: 16699783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual trajectories of single-joint movements performed under two basic strategies.
    Latash ML; Gottlieb GL
    Neuroscience; 1992; 47(2):357-65. PubMed ID: 1641128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.