These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9116221)

  • 41. Premovement gating of somatosensory evoked potentials after tibial nerve stimulation.
    Asanuma K; Urushihara R; Nakamura K; Kitaoka K; Sei H; Morita Y; Shibasaki H; Kaji R
    Neuroreport; 2003 Mar; 14(3):375-9. PubMed ID: 12634487
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The afferent origin of the secondary somatosensory evoked potential from the lower limb in humans.
    Nelson AJ; Brooke JD; McIlroy WE; Linklater CM; Staines WR
    Brain Res; 2000 Dec; 887(2):432-5. PubMed ID: 11134636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Movement features and H-reflex modulation. II. Passive rotation, movement velocity and single leg movement.
    McIlroy WE; Collins DF; Brooke JD
    Brain Res; 1992 Jun; 582(1):85-93. PubMed ID: 1498683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of soleus H-reflex amplitude is graded with frequency of rhythmic arm cycling.
    Hundza SR; Zehr EP
    Exp Brain Res; 2009 Feb; 193(2):297-306. PubMed ID: 19011847
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scalp distribution of the earliest cortical somatosensory evoked potential to tibial nerve stimulation: proposal of a new recording montage.
    Valeriani M; Restuccia D; Le Pera D; Barba C; Tonali P
    Clin Neurophysiol; 2000 Aug; 111(8):1469-77. PubMed ID: 10904229
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement.
    Kida T; Wasaka T; Nakata H; Kakigi R
    Exp Brain Res; 2006 Mar; 169(3):289-301. PubMed ID: 16307265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nerve specific modulation of somatosensory inflow to cerebral cortex during submaximal sustained contraction in first dorsal interosseous muscle.
    Nakajima T; Endoh T; Sakamoto M; Komiyama T
    Brain Res; 2005 Aug; 1053(1-2):146-53. PubMed ID: 16026769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Somatosensory graviception inhibits soleus H-reflex gain in humans during walking.
    Miyoshi T; Hotta K; Yamamoto S; Nakazawa K; Akai M
    Exp Brain Res; 2006 Feb; 169(1):135-8. PubMed ID: 16365752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amplitude of muscle stretch modulates corticomotor gain during passive movement.
    Coxon JP; Stinear JW; Byblow WD
    Brain Res; 2005 Jan; 1031(1):109-17. PubMed ID: 15621018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms within the human spinal cord suppress fast reflexes to control the movement of the legs.
    Brooke JD; McIlroy WE; Collins DF; Misiaszek JE
    Brain Res; 1995 May; 679(2):255-60. PubMed ID: 7633885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Giant early components of somatosensory evoked potentials to tibial nerve stimulation in cortical myoclonus.
    Anzellotti F; Onofrj M; Bonanni L; Saracino A; Franciotti R
    Neuroimage Clin; 2016; 12():212-8. PubMed ID: 27489768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soleus H-reflex modulation pattern for a fine angle of hip and knee joint passive movement.
    Tanabe S; Muraoka Y; Kamiya A; Tomita Y; Masakado Y
    Int J Neurosci; 2005 Jan; 115(1):1-11. PubMed ID: 15768847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms.
    Mezzarane RA; Magalhães FH; Chaud VM; Elias LA; Kohn AF
    PLoS One; 2015; 10(3):e0121496. PubMed ID: 25807195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans.
    Morita H; Petersen N; Christensen LO; Sinkjaer T; Nielsen J
    J Neurophysiol; 1998 Aug; 80(2):610-20. PubMed ID: 9705454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Somatosensory evoked potentials during compound thumb movement.
    Gavrilenko T; Gantchev GN; Ioffe M; Dimitrov B
    Electromyogr Clin Neurophysiol; 1993; 33(3):143-8. PubMed ID: 8495654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acute bouts of active and passive leg cycling attenuate the amplitude of the soleus H-reflex in humans.
    Motl RW; Knowles BD; Dishman RK
    Neurosci Lett; 2003 Aug; 347(2):69-72. PubMed ID: 12873730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Somatosensory evoked potentials following stimulation of the lower limb in cortical reflex myoclonus.
    Kakigi R; Shibasaki H
    J Neurol Neurosurg Psychiatry; 1987 Dec; 50(12):1641-6. PubMed ID: 3437295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans.
    Tsuji T; Rothwell JC
    J Physiol; 2002 Apr; 540(Pt 1):367-76. PubMed ID: 11927693
    [TBL] [Abstract][Full Text] [Related]  

  • 59. H-reflex and F-wave potentials in leg and arm muscles.
    Jusić A; Baraba R; Bogunović A
    Electromyogr Clin Neurophysiol; 1995 Dec; 35(8):471-8. PubMed ID: 8773207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in somatosensory evoked potentials and Hoffmann reflexes during fast isometric contraction of foot plantarflexor in humans.
    Nakajima T; Wasaka T; Kida T; Nishimura Y; Fumoto M; Sakamoto M; Takashi E
    Percept Mot Skills; 2006 Dec; 103(3):847-60. PubMed ID: 17326514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.