These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 9116325)

  • 41. Remodeling of Ca(2+)-handling by atrial tachycardia: evidence for a role in loss of rate-adaptation.
    Kneller J; Sun H; Leblanc N; Nattel S
    Cardiovasc Res; 2002 May; 54(2):416-26. PubMed ID: 12062346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
    Han C; Tavi P; Weckström M
    Biophys J; 2002 Mar; 82(3):1483-96. PubMed ID: 11867463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of cyclopiazonic acid on membrane currents, contraction and intracellular calcium transients in frog heart.
    Badaoui A; Huchet-Cadiou C; Léoty C
    J Mol Cell Cardiol; 1995 Nov; 27(11):2495-505. PubMed ID: 8596200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum.
    Michailova A; DelPrincipe F; Egger M; Niggli E
    Biophys J; 2002 Dec; 83(6):3134-51. PubMed ID: 12496084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for direct involvement of the sarcoplasmic reticulum Ca(2+)-ATPase in a passive monovalent cation (K+/Na+) exchange.
    de Jesus F; Cuillel M; Dupont Y
    FEBS Lett; 1995 Dec; 376(3):167-71. PubMed ID: 7498534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intracellular citrate induces regenerative calcium release from sarcoplasmic reticulum in guinea-pig atrial myocytes.
    Callewaert G; Sipido KR; Carmeliet E; Pott L; Lipp P
    Pflugers Arch; 1995 Apr; 429(6):797-804. PubMed ID: 7603833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Twitch-dependent SR Ca accumulation and release in rabbit ventricular myocytes.
    Bassani JW; Bassani RA; Bers DM
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C533-40. PubMed ID: 8368279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Passive Ca buffering and SR Ca uptake in permeabilized rabbit ventricular myocytes.
    Hove-Madsen L; Bers DM
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C677-86. PubMed ID: 7681625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of Na/Ca exchange and intracellular mobilized Ca2+ in Na,K-pump-mediated control of depression of the cholinosensitivy of common snail neurons [correction of neorons] using a cellular analog of habituation.
    Pivovarov AS; Nistratova VL; Boguslavskii DV
    Neurosci Behav Physiol; 2003 Feb; 33(2):113-21. PubMed ID: 12669781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium-calmodulin-dependent mechanisms accelerate calcium decay in gastric myocytes from Bufo marinus.
    McGeown JG; McCarron JG; Drummond RM; Fay FS
    J Physiol; 1998 Jan; 506 ( Pt 1)(Pt 1):95-107. PubMed ID: 9481675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reverse mode of the sarcoplasmic reticulum Ca pump limits sarcoplasmic reticulum Ca uptake in permeabilized and voltage-clamped myocytes.
    Shannon TR; Ginsburg KS; Bers DM
    Ann N Y Acad Sci; 1998 Sep; 853():350-2. PubMed ID: 10603977
    [No Abstract]   [Full Text] [Related]  

  • 52. Calcium and the heart: exchange at the tissue, cell, and organelle levels.
    Langer GA
    FASEB J; 1992 Feb; 6(3):893-902. PubMed ID: 1310947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Na(+)/Ca(2+) exchange inhibitors modulate thapsigargin-induced Ca(2+) and Na(+) influx in human lymphocytes.
    Nofer JR; Pulawski E; Junker R; Seedorf U; Assmann G; Zidek W; Tepel M
    Int J Clin Lab Res; 1999; 29(2):89-92. PubMed ID: 10436268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of temperature upon calcium exchange in intact cultured cardiac myocytes.
    Marengo FD; Wang SY; Langer GA
    Cell Calcium; 1997 Apr; 21(4):263-73. PubMed ID: 9160162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. X-ray microanalysis of single cardiac myocytes frozen under voltage-clamp conditions.
    Wendt-Gallitelli MF; Isenberg G
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H574-83. PubMed ID: 2916690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of hypertrophy on mechanisms of relaxation in isolated cardiac myocytes from guinea pig.
    Naqvi RU; Macleod KT
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H1851-61. PubMed ID: 7977815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Excitation-contraction coupling in heart cells. Roles of the sodium-calcium exchange, the calcium current, and the sarcoplasmic reticulum.
    Lederer WJ; Berlin JR; Cohen NM; Hadley RW; Bers DM; Cannell MB
    Ann N Y Acad Sci; 1990; 588():190-206. PubMed ID: 2357018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-resolution measurement and calibration of Ca(2+)-transients using Indo-1 in guinea-pig atrial myocytes under voltage clamp.
    Callewaert G; Lipp P; Pott L; Carmeliet E
    Cell Calcium; 1991 Apr; 12(4):269-77. PubMed ID: 1855249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sarcolemmal calcium binding sites in heart: II. Mathematical model for diffusion of calcium released from the sarcoplasmic reticulum into the diadic region.
    Peskoff A; Post JA; Langer GA
    J Membr Biol; 1992 Jul; 129(1):59-69. PubMed ID: 1404341
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Appraisal of the physiological relevance of two hypothesis for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge-coupled release.
    Fabiato A
    Mol Cell Biochem; 1989 Sep; 89(2):135-40. PubMed ID: 2682207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.