These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 911760)
21. Transport of 8-anilino-1-naphthalenesulfonate as a probe of the effect of cholesterol on the phospholipid bilayer structures. Tson- TY Biochemistry; 1975 Dec; 14(25):5415-7. PubMed ID: 1201274 [TBL] [Abstract][Full Text] [Related]
22. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
23. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. Nagle JF J Membr Biol; 1976; 27(3):233-50. PubMed ID: 940146 [TBL] [Abstract][Full Text] [Related]
24. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909 [TBL] [Abstract][Full Text] [Related]
26. The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Van Dijck PW; De Kruijff B; Van Deenen LL; De Gier J; Demel RA Biochim Biophys Acta; 1976 Dec; 455(2):576-87. PubMed ID: 999929 [TBL] [Abstract][Full Text] [Related]
27. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry. Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583 [TBL] [Abstract][Full Text] [Related]
28. Mixing behavior of symmetric chain length and mixed chain length phosphatidylcholines in two-component multilamellar bilayers: evidence for gel and liquid-crystalline phase immiscibility. Mason JT Biochemistry; 1988 Jun; 27(12):4421-9. PubMed ID: 3166986 [TBL] [Abstract][Full Text] [Related]
29. Component and state separation in DMPC/DSPC lipid bilayers: a Monte Carlo simulation study. Michonova-Alexova EI; Sugár IP Biophys J; 2002 Oct; 83(4):1820-33. PubMed ID: 12324404 [TBL] [Abstract][Full Text] [Related]
30. Phase behavior of two-component lipid membranes: theory and experiments. Kamal MA; Pal A; Raghunathan VA; Rao M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051701. PubMed ID: 23004773 [TBL] [Abstract][Full Text] [Related]
31. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Lentz BR; Barenholz Y; Thompson TE Biochemistry; 1976 Oct; 15(20):4521-8. PubMed ID: 974073 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the defect structure of gel-phase lipid. Lee AG Biochemistry; 1977 Mar; 16(5):835-41. PubMed ID: 191057 [TBL] [Abstract][Full Text] [Related]
33. Effect of deuterium oxide on the thermodynamic quantities associated with phase transitions of phosphatidylcholine bilayer membranes. Matsuki H; Okuno H; Sakano F; Kusube M; Kaneshina S Biochim Biophys Acta; 2005 Jun; 1712(1):92-100. PubMed ID: 15869741 [TBL] [Abstract][Full Text] [Related]
34. Phase diagrams and the kinetics of phospholipid exchange for vesicles of different composition and radius. Kremer JM; Kops-Werkhoven MM; Pathmamanoharan C; Gijzeman OL; Wiersema PH Biochim Biophys Acta; 1977 Dec; 471(2):177-88. PubMed ID: 921978 [TBL] [Abstract][Full Text] [Related]
35. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
36. Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study. Hresko RC; Sugár IP; Barenholz Y; Thompson TE Biochemistry; 1986 Jul; 25(13):3813-23. PubMed ID: 3741837 [TBL] [Abstract][Full Text] [Related]
37. The effect of cholesterol on the structure of phosphatidylcholine bilayers. McIntosh TJ Biochim Biophys Acta; 1978 Oct; 513(1):43-58. PubMed ID: 718889 [TBL] [Abstract][Full Text] [Related]
38. Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phophoslipid artificial membranes. Andrich MP; Vanderkooi JM Biochemistry; 1976 Mar; 15(6):1257-61. PubMed ID: 1252446 [TBL] [Abstract][Full Text] [Related]
39. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Cevc G Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710 [TBL] [Abstract][Full Text] [Related]
40. Electron diffraction study of hydrated phospholipid single bilayers. Effects of temperature hydration and surface pressure of the "precursor" monolayer. Hui SW; Cowden M; Papahadjopoulos D; Parsons DF Biochim Biophys Acta; 1975 Mar; 382(3):265-75. PubMed ID: 1125235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]