These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9117899)

  • 1. Extracting rules from neural networks by pruning and hidden-unit splitting.
    Setiono R
    Neural Comput; 1997 Jan; 9(1):205-25. PubMed ID: 9117899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting rules from pruned networks for breast cancer diagnosis.
    Setiono R
    Artif Intell Med; 1996 Feb; 8(1):37-51. PubMed ID: 8963380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greedy rule generation from discrete data and its use in neural network rule extraction.
    Odajima K; Hayashi Y; Tianxia G; Setiono R
    Neural Netw; 2008 Sep; 21(7):1020-8. PubMed ID: 18442894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rule extraction from minimal neural networks for credit card screening.
    Setiono R; Baesens B; Mues C
    Int J Neural Syst; 2011 Aug; 21(4):265-76. PubMed ID: 21809474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracting M-of-N rules from trained neural networks.
    Setiono R
    IEEE Trans Neural Netw; 2000; 11(2):512-9. PubMed ID: 18249780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks.
    Huynh HT; Won Y; Kim JJ
    Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-hidden-layer feed-forward quantum neural network based on Grover learning.
    Liu CY; Chen C; Chang CT; Shih LM
    Neural Netw; 2013 Sep; 45():144-50. PubMed ID: 23545155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pruning of rat cortical taste neurons by an artificial neural network model.
    Nagai T; Katayama H; Aihara K; Yamamoto T
    J Neurophysiol; 1995 Sep; 74(3):1010-9. PubMed ID: 7500127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical pruning: a method to construct skeleton radial basis function networks.
    Augusteijn MF; Shaw KA
    Int J Neural Syst; 2000 Apr; 10(2):143-54. PubMed ID: 10939346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional localization of neural networks using genetic algorithms.
    Tsukimoto H; Hatano H
    Neural Netw; 2003 Jan; 16(1):55-67. PubMed ID: 12576106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A more biologically plausible learning rule than backpropagation applied to a network model of cortical area 7a.
    Mazzoni P; Andersen RA; Jordan MI
    Cereb Cortex; 1991; 1(4):293-307. PubMed ID: 1822737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting boolean and probabilistic rules from trained neural networks.
    Liu P; Melkman AA; Akutsu T
    Neural Netw; 2020 Jun; 126():300-311. PubMed ID: 32278262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pruning feedforward small-world neural network based on Katz centrality for nonlinear system modeling.
    Li W; Chu M; Qiao J
    Neural Netw; 2020 Oct; 130():269-285. PubMed ID: 32711349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A penalty-function approach for pruning feedforward neural networks.
    Setiono R
    Neural Comput; 1997 Jan; 9(1):185-204. PubMed ID: 9117898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient adaptive learning for classification tasks with binary units.
    Torres Moreno JM; Gordon MB
    Neural Comput; 1998 May; 10(4):1007-30. PubMed ID: 9573417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.
    Vuković N; Miljković Z
    Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recursive neural network rule extraction for data with mixed attributes.
    Setiono R; Baesens B; Mues C
    IEEE Trans Neural Netw; 2008 Feb; 19(2):299-307. PubMed ID: 18269960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lempel-Ziv complexity-based neural network pruning algorithm.
    Ahmed SU; Shahjahan M; Murase K
    Int J Neural Syst; 2011 Oct; 21(5):427-41. PubMed ID: 21956934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the number of hidden neurons in a feedforward network using the singular value decomposition.
    Teoh EJ; Tan KC; Xiang C
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1623-9. PubMed ID: 17131674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.