BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 911854)

  • 1. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid).
    Pensa B; Costa M; Pecci L; Cannella C; Cavallini D
    Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of cyanolysis of the rhodanese-thionitrobenzoate complex.
    Pensa B; Costa M; Cannella C; Pecci L; Cavallini D
    Ital J Biochem; 1980; 29(4):266-72. PubMed ID: 6938499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine 254 can cooperate with active site cysteine 247 in reactivation of 5,5'-dithiobis(2-nitrobenzoic acid)-inactivated rhodanese as determined by site-directed mutagenesis.
    Miller-Martini DM; Hua S; Horowitz PM
    J Biol Chem; 1994 Apr; 269(17):12414-8. PubMed ID: 8175646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR; Horowitz PM
    Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanylation of rhodanese by 2-nitro-5-thiocyanobenzoic acid.
    Pecci L; Cannella C; Pensa B; Costa M; Cavallini D
    Biochim Biophys Acta; 1980 Jun; 623(2):348-53. PubMed ID: 6930978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent.
    Nishino T; Usami C; Tsushima K
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1826-9. PubMed ID: 6572944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase.
    Horowitz P; Criscimagna NL
    Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S; Bonomi F; Cerletti P
    Biochim Biophys Acta; 1983 Jan; 742(1):116-21. PubMed ID: 6402017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation.
    Horowitz PM; Bowman S
    J Biol Chem; 1989 Feb; 264(6):3311-6. PubMed ID: 2914953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms.
    Cannella C; Berni R; Rosato N; Finazzi-Agrò A
    Biochemistry; 1986 Nov; 25(23):7319-23. PubMed ID: 3467793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denaturation-induced disulfide formation in the enzyme rhodanese.
    Baillie RD; Horowitz PM
    Biochim Biophys Acta; 1976 Apr; 429(2):383-90. PubMed ID: 4128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese.
    Guido K; Horowitz P
    Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis.
    Horowitz P; Criscimagna NL
    J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate.
    Palenchar PM; Buck CJ; Cheng H; Larson TJ; Mueller EG
    J Biol Chem; 2000 Mar; 275(12):8283-6. PubMed ID: 10722656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Aug; 260(17):9593-7. PubMed ID: 3860502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiosulfate: cyanide sulfurtransferase (rhodanese).
    Westley J
    Methods Enzymol; 1981; 77():285-91. PubMed ID: 6948991
    [No Abstract]   [Full Text] [Related]  

  • 20. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L; Heinrikson RL; Westley J
    J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.