These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 9118895)
1. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Gut I; Nedelcheva V; Soucek P; Stopka P; Tichavská B Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1211-8. PubMed ID: 9118895 [TBL] [Abstract][Full Text] [Related]
2. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Soucek P; Ivan G; Pavel S Chem Biol Interact; 2000 Apr; 126(1):45-61. PubMed ID: 10826653 [TBL] [Abstract][Full Text] [Related]
3. The role of CYP2E1 and 2B1 in metabolic activation of benzene derivatives. Gut I; Nedelcheva V; Soucek P; Stopka P; Vodicka P; Gelboin HV; Ingelman-Sundberg M Arch Toxicol; 1996; 71(1-2):45-56. PubMed ID: 9010585 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome P450 destruction by benzene metabolites 1,4-benzoquinone and 1,4-hydroquinone and the formation of hydroxyl radicals in minipig liver microsomes. Kondrová E; Stopka P; Soucek P Toxicol In Vitro; 2007 Jun; 21(4):566-75. PubMed ID: 17187958 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome P450 destruction by quinones: comparison of effects in rat and human liver microsomes. Soucek P Chem Biol Interact; 1999 Aug; 121(3):223-36. PubMed ID: 10462055 [TBL] [Abstract][Full Text] [Related]
6. Cytochrome P450 destruction and radical scavenging by benzene and its metabolites. Evidence for the key role of quinones. Soucek P; Filipcova B; Gut I Biochem Pharmacol; 1994 Jun; 47(12):2233-42. PubMed ID: 8031317 [TBL] [Abstract][Full Text] [Related]
7. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Snyder R; Chepiga T; Yang CS; Thomas H; Platt K; Oesch F Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999 [TBL] [Abstract][Full Text] [Related]
8. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
9. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweier JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene. Hutt AM; Kalf GF Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1265-9. PubMed ID: 9118903 [TBL] [Abstract][Full Text] [Related]
11. Differences in rates of benzene metabolism correlate with observed genotoxicity. Kenyon EM; Kraichely RE; Hudson KT; Medinsky MA Toxicol Appl Pharmacol; 1996 Jan; 136(1):49-56. PubMed ID: 8560479 [TBL] [Abstract][Full Text] [Related]
12. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage. Li Y; Kuppusamy P; Zweier JL; Trush MA Chem Biol Interact; 1995 Feb; 94(2):101-20. PubMed ID: 7828218 [TBL] [Abstract][Full Text] [Related]
13. DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Li Y; Trush MA Carcinogenesis; 1993 Jul; 14(7):1303-11. PubMed ID: 8392444 [TBL] [Abstract][Full Text] [Related]
14. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity. Seaton MJ; Schlosser PM; Bond JA; Medinsky MA Carcinogenesis; 1994 Sep; 15(9):1799-806. PubMed ID: 7923572 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide. Gergel D; Misík V; Riesz P; Cederbaum AI Arch Biochem Biophys; 1997 Jan; 337(2):239-50. PubMed ID: 9016819 [TBL] [Abstract][Full Text] [Related]
16. Genotoxicity of the benzene metabolites para-benzoquinone and hydroquinone. Gaskell M; McLuckie KI; Farmer PB Chem Biol Interact; 2005 May; 153-154():267-70. PubMed ID: 15935826 [TBL] [Abstract][Full Text] [Related]
17. Investigating the role of the aryl hydrocarbon receptor in benzene-initiated toxicity in vitro. Badham HJ; Winn LM Toxicology; 2007 Jan; 229(3):177-85. PubMed ID: 17161514 [TBL] [Abstract][Full Text] [Related]
18. The fate of benzene-oxide. Monks TJ; Butterworth M; Lau SS Chem Biol Interact; 2010 Mar; 184(1-2):201-6. PubMed ID: 20036650 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of action of novel naphthofuranquinones on rat liver microsomal peroxidation. Elingold I; Taboas MI; Casanova MB; Galleano M; Silva RS; Menna-Barreto RF; Ventura Pinto A; de Castro SL; Costa LE; Dubin M Chem Biol Interact; 2009 Dec; 182(2-3):213-9. PubMed ID: 19744469 [TBL] [Abstract][Full Text] [Related]
20. Generation of phosphorylated histone H2AX by benzene metabolites. Ishihama M; Toyooka T; Ibuki Y Toxicol In Vitro; 2008 Dec; 22(8):1861-8. PubMed ID: 18835433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]