These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9119046)
1. Mutagenesis of firefly luciferase shows that cysteine residues are not required for bioluminescence activity. Ohmiya Y; Tsuji FI FEBS Lett; 1997 Mar; 404(2-3):115-7. PubMed ID: 9119046 [TBL] [Abstract][Full Text] [Related]
2. A cysteine-free firefly luciferase retains luminescence activity. Kumita JR; Jain L; Safroneeva E; Woolley GA Biochem Biophys Res Commun; 2000 Jan; 267(1):394-7. PubMed ID: 10623630 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal amino acid sequences of the firefly luciferase are important for the stability of the enzyme. Sung D; Kang H Photochem Photobiol; 1998 Nov; 68(5):749-53. PubMed ID: 9825705 [TBL] [Abstract][Full Text] [Related]
4. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases. Viviani VR; Simões A; Bevilaqua VR; Gabriel GV; Arnoldi FG; Hirano T Biochemistry; 2016 Aug; 55(34):4764-76. PubMed ID: 27391007 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Branchini BR; Magyar RA; Murtiashaw MH; Anderson SM; Helgerson LC; Zimmer M Biochemistry; 1999 Oct; 38(40):13223-30. PubMed ID: 10529195 [TBL] [Abstract][Full Text] [Related]
6. Influence of the C-terminal domain on the bioluminescence activity and color determination in green and red emitting beetle luciferases and luciferase-like enzyme. Bevilaqua VR; Carvalho MC; Pelentir GF; Tomazini A; Murakami M; Viviani VR Photochem Photobiol Sci; 2021 Jan; 20(1):113-122. PubMed ID: 33721241 [TBL] [Abstract][Full Text] [Related]
7. Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis. Hirokawa K; Kajiyama N; Murakami S Biochim Biophys Acta; 2002 Jun; 1597(2):271-9. PubMed ID: 12044905 [TBL] [Abstract][Full Text] [Related]
8. Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis. Sala-Newby GB; Thomson CM; Campbell AK Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):761-7. PubMed ID: 8611152 [TBL] [Abstract][Full Text] [Related]
9. Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354. White PJ; Squirrell DJ; Arnaud P; Lowe CR; Murray JA Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):343-50. PubMed ID: 8912666 [TBL] [Abstract][Full Text] [Related]
10. Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins. Waud JP; Sala-Newby GB; Matthews SB; Campbell AK Biochim Biophys Acta; 1996 Jan; 1292(1):89-98. PubMed ID: 8547353 [TBL] [Abstract][Full Text] [Related]
11. The role of active site residue arginine 218 in firefly luciferase bioluminescence. Branchini BR; Magyar RA; Murtiashaw MH; Portier NC Biochemistry; 2001 Feb; 40(8):2410-8. PubMed ID: 11327861 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: Relationship with kinetics and bioluminescence colours. Oliveira G; Viviani VR Luminescence; 2018 Mar; 33(2):282-288. PubMed ID: 29094493 [TBL] [Abstract][Full Text] [Related]
13. Creation of a thermostable firefly luciferase with pH-insensitive luminescent color. Kitayama A; Yoshizaki H; Ohmiya Y; Ueda H; Nagamune T Photochem Photobiol; 2003 Mar; 77(3):333-8. PubMed ID: 12685663 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent properties of firefly luciferases and their complexes with luciferin. Dementieva EI; Fedorchuk EA; Brovko LY; Savitskii AP; Ugarova NN Biosci Rep; 2000 Feb; 20(1):21-30. PubMed ID: 10888408 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of thermostability of firefly luciferase from Luciola lateralis by a single amino acid substitution. Kajiyama N; Nakano E Biosci Biotechnol Biochem; 1994 Jun; 58(6):1170-1. PubMed ID: 7765039 [TBL] [Abstract][Full Text] [Related]
16. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site. Prado RA; Barbosa JA; Ohmiya Y; Viviani VR Photochem Photobiol Sci; 2011 Jul; 10(7):1226-32. PubMed ID: 21505686 [TBL] [Abstract][Full Text] [Related]
17. N-tosyl-L-phenylalanine chloromethyl ketone inhibits NF-kappaB activation by blocking specific cysteine residues of IkappaB kinase beta and p65/RelA. Ha KH; Byun MS; Choi J; Jeong J; Lee KJ; Jue DM Biochemistry; 2009 Aug; 48(30):7271-8. PubMed ID: 19591457 [TBL] [Abstract][Full Text] [Related]
18. A new firefly luciferase with bimodal spectrum: identification of structural determinants of spectral pH-sensitivity in firefly luciferases. Viviani VR; Oehlmeyer TL; Arnoldi FG; Brochetto-Braga MR Photochem Photobiol; 2005; 81(4):843-8. PubMed ID: 16124832 [TBL] [Abstract][Full Text] [Related]
19. A new orange emitting luciferase from the Southern-Amazon Pyrophorus angustus (Coleoptera: Elateridae) click-beetle: structure and bioluminescence color relationship, evolutional and ecological considerations. Amaral DT; Oliveira G; Silva JR; Viviani VR Photochem Photobiol Sci; 2016 Aug; 15(9):1148-1154. PubMed ID: 27454752 [TBL] [Abstract][Full Text] [Related]
20. Cloning of the Orange Light-Producing Luciferase from Photinus scintillans-A New Proposal on how Bioluminescence Color is Determined. Branchini BR; Southworth TL; Fontaine DM; Murtiashaw MH; McGurk A; Talukder MH; Qureshi R; Yetil D; Sundlov JA; Gulick AM Photochem Photobiol; 2017 Mar; 93(2):479-485. PubMed ID: 27861940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]