These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9119198)

  • 1. Site-directed mutagenesis of the cysteine residues in the Pichia stipitis xylose reductase.
    Zhang Y; Lee H
    FEMS Microbiol Lett; 1997 Feb; 147(2):227-32. PubMed ID: 9119198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase.
    Kostrzynska M; Sopher CR; Lee H
    FEMS Microbiol Lett; 1998 Feb; 159(1):107-12. PubMed ID: 9485600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mutational research on the role of lysine 21 in the Pichia stipitis xylose reductase].
    Zeng Q; Du H; Zhai Z; Lin X; Lin Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1108-11. PubMed ID: 18808001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K
    Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.
    Zhang M; Jiang ST; Zheng Z; Li XJ; Luo SZ; Wu XF
    J Basic Microbiol; 2015 Jul; 55(7):907-21. PubMed ID: 25709086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis.
    Amore R; Kötter P; Küster C; Ciriacy M; Hollenberg CP
    Gene; 1991 Dec; 109(1):89-97. PubMed ID: 1756986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis.
    Verduyn C; Van Kleef R; Frank J; Schreuder H; Van Dijken JP; Scheffers WA
    Biochem J; 1985 Mar; 226(3):669-77. PubMed ID: 3921014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus.
    Zhang B; Li L; Zhang J; Gao X; Wang D; Hong J
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):305-16. PubMed ID: 23392758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity.
    Metzger MH; Hollenberg CP
    Eur J Biochem; 1995 Feb; 228(1):50-4. PubMed ID: 7883010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae.
    Träff-Bjerre KL; Jeppsson M; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2004 Jan; 21(2):141-50. PubMed ID: 14755639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylitol production by recombinant Saccharomyces cerevisiae.
    Hallborn J; Walfridsson M; Airaksinen U; Ojamo H; Hahn-Hägerdal B; Penttilä M; Keräsnen S
    Biotechnology (N Y); 1991 Nov; 9(11):1090-5. PubMed ID: 1367625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (Texr) and a double mutant (TexrK271R + N273D) with altered coenzyme specificity.
    Fernandes S; Tuohy MG; Murray PG
    J Biosci; 2009 Dec; 34(6):881-90. PubMed ID: 20093741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae.
    Meinander N; Zacchi G; Hahn-Hägerdal B
    Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():165-172. PubMed ID: 8581161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.