These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
59 related articles for article (PubMed ID: 9119286)
21. Pressure distribution in the pial arterial system of rats based on morphometric data and mathematical models. Hudetz AG; Conger KA; Halsey JH; Pal M; Dohan O; Kovach AG J Cereb Blood Flow Metab; 1987 Jun; 7(3):342-55. PubMed ID: 3584267 [TBL] [Abstract][Full Text] [Related]
22. The measurement of internal pH in resistance arterioles: evidence that intracellular pH is more alkaline in SHR than WKY animals. Izzard AS; Heagerty AM J Hypertens; 1989 Mar; 7(3):173-80. PubMed ID: 2708814 [TBL] [Abstract][Full Text] [Related]
23. The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Engelson ET; Schmid-Schönbein GW; Zweifach BW Int J Microcirc Clin Exp; 1985; 4(3):229-48. PubMed ID: 4066180 [TBL] [Abstract][Full Text] [Related]
24. Reactivity of rat pial arterioles and venules to adenosine and carbon dioxide: with detailed description of the closed cranial window technique in rats. Morii S; Ngai AC; Winn HR J Cereb Blood Flow Metab; 1986 Feb; 6(1):34-41. PubMed ID: 3080442 [TBL] [Abstract][Full Text] [Related]
25. Muscle arteriolar and venular reactivity in two models of hypertensive rats. Losada M; Torres SH; Hernández N; Lippo M; Sosa A Microvasc Res; 2005 May; 69(3):142-8. PubMed ID: 15896356 [TBL] [Abstract][Full Text] [Related]
27. Impairment of flow-induced dilation of skeletal muscle arterioles with elevated oxygen in normotensive and hypertensive rats. Frisbee JC; Roman RJ; Falck JR; Linderman JR; Lombard JH Microvasc Res; 2000 Jul; 60(1):37-48. PubMed ID: 10873513 [TBL] [Abstract][Full Text] [Related]
28. Renal hemodynamics during development of hypertension in young spontaneously hypertensive rats. Christiansen RE; Roald AB; Tenstad O; Iversen BM Kidney Blood Press Res; 2002; 25(5):322-8. PubMed ID: 12435879 [TBL] [Abstract][Full Text] [Related]
29. Active tone and arteriolar responses to increased oxygen availability in the mesoappendix of spontaneously hypertensive rats. Lombard JH; Stekiel WJ Microcirc Endothelium Lymphatics; 1988 Oct; 4(5):339-53. PubMed ID: 3244329 [TBL] [Abstract][Full Text] [Related]
32. Upregulation of V(1) receptors in renal resistance vessels of rats developing genetic hypertension. Vågnes O; Feng JJ; Iversen BM; Arendshorst WJ Am J Physiol Renal Physiol; 2000 Jun; 278(6):F940-8. PubMed ID: 10836981 [TBL] [Abstract][Full Text] [Related]
33. [Response of pial arterioles to alveolar hypercapnia in normotensive and hypertensive rats]. Ryzhikova OP; Shuvaeva VN; Dvoretskiĭ DP Ross Fiziol Zh Im I M Sechenova; 2001 Feb; 87(2):254-60. PubMed ID: 11296710 [TBL] [Abstract][Full Text] [Related]
34. Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Ueno M; Sakamoto H; Tomimoto H; Akiguchi I; Onodera M; Huang CL; Kanenishi K Acta Neuropathol; 2004 Jun; 107(6):532-8. PubMed ID: 15042385 [TBL] [Abstract][Full Text] [Related]
35. Life and death cell labeling in the microcirculation of the spontaneously hypertensive rat. Lim HH; DeLano FA; Schmid-Schönbein GW J Vasc Res; 2001; 38(3):228-36. PubMed ID: 11399895 [TBL] [Abstract][Full Text] [Related]
36. Differential effects of propofol, ketamine, and thiopental anaesthesia on the skeletal muscle microcirculation of normotensive and hypertensive rats in vivo. Brookes ZL; Reilly CS; Brown NJ Br J Anaesth; 2004 Aug; 93(2):249-56. PubMed ID: 15194625 [TBL] [Abstract][Full Text] [Related]
37. Increased expression and activity of phospholipase C in renal arterioles of young spontaneously hypertensive rats. Peng Z; Dang A; Arendshorst WJ Am J Hypertens; 2007 Jan; 20(1):38-43. PubMed ID: 17198910 [TBL] [Abstract][Full Text] [Related]