These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 9119827)

  • 61. Finite element analysis of nonlinear pulsatile suspension flow dynamics in blood vessels with aneurysm.
    Kumar BV; Naidu KB
    Comput Biol Med; 1995 Jan; 25(1):1-20. PubMed ID: 7600757
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis.
    Alastruey J
    Cardiovasc Eng; 2010 Dec; 10(4):176-89. PubMed ID: 21165776
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Numerical simulation for the propagation of nonlinear pulsatile waves in arteries.
    Ma X; Lee GC; Wu SG
    J Biomech Eng; 1992 Nov; 114(4):490-6. PubMed ID: 1487901
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions.
    Bensalah A; Flaud P
    Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pressure wave propagation in arteries. A model with radial dilatation for simulating the behavior of a real artery.
    Wang YY; Chang CC; Chen JC; Hsiu H; Wang WK
    IEEE Eng Med Biol Mag; 1997; 16(1):51-6. PubMed ID: 9058582
    [No Abstract]   [Full Text] [Related]  

  • 68. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the wave transmission and reflection properties of stenoses.
    Stergiopulos N; Spiridon M; Pythoud F; Meister JJ
    J Biomech; 1996 Jan; 29(1):31-8. PubMed ID: 8839015
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of dispersion of fiber orientation on the mechanical property of the arterial wall.
    Ren JS
    J Theor Biol; 2012 May; 301():153-60. PubMed ID: 22391392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.
    Das A; Paul A; Taylor MD; Banerjee RK
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S18. PubMed ID: 25603022
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developing steady laminar flow through uniform straight tubes with varying wall cross curvature.
    Naili S; Thiriet M; Ribreau C
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):319-30. PubMed ID: 15621652
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 3D dynamical ultrasonic model of pulsating vessel walls.
    Balocco S; Basset O; Courbebaisse G; Delachartre P; Tortoli P; Cachard C
    Ultrasonics; 2006 Dec; 44 Suppl 1():e179-83. PubMed ID: 16857232
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Finite strain elastodynamics of intracranial saccular aneurysms.
    Shah AD; Humphrey JD
    J Biomech; 1999 Jun; 32(6):593-9. PubMed ID: 10332623
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The dynamics of pulsatile flow in distensible model arteries.
    Liepsch DW; Zimmer R
    Technol Health Care; 1995 Dec; 3(3):185-99. PubMed ID: 8749865
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Blood flow through an axisymmetric stenosis.
    Pontrelli G
    Proc Inst Mech Eng H; 2001; 215(1):1-10. PubMed ID: 11323977
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Differentiation of stenosed and aneurysmal arteries by pulse wave propagation analysis based on a fluid-solid interaction computational method.
    Fukui T; Parker KH; Tsubota K; Wada S; Yamaguchi T
    Technol Health Care; 2007; 15(2):79-90. PubMed ID: 17361052
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Variation of wave speed determined by the PU-loop with proximity to a reflection site.
    Li Y; Borlotti A; Parker KH; Khir AW
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():199-202. PubMed ID: 22254284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.