BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9119834)

  • 1. Comment on "The use of an implantable force transducer to measure patellar tendon forces in goats".
    Herzog W; Hasler EM
    J Biomech; 1997 Mar; 30(3):303, 305-6. PubMed ID: 9119834
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of sensor size on the accuracy of in-vivo ligament and tendon force measurements.
    Rupert M; Grood E; Byczkowski T; Levy M
    J Biomech Eng; 1998 Dec; 120(6):764-9. PubMed ID: 10412461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-situ calibration of the implantable force transducer.
    Herzog W; Hasler EM; Leonard TR
    J Biomech; 1996 Dec; 29(12):1649-52. PubMed ID: 8945667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the implantable force transducer for chronic tendon-force recordings.
    Herzog W; Archambault JM; Leonard TR; Nguyen HK
    J Biomech; 1996 Jan; 29(1):103-9. PubMed ID: 8839023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration and application of an intra-articular force transducer for the measurement of patellar tendon graft forces: an in situ evaluation.
    Fleming BC; Good L; Peura GD; Beynnon BD
    J Biomech Eng; 1999 Aug; 121(4):393-8. PubMed ID: 10464693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of an implantable force transducer to measure patellar tendon forces in goats.
    Korvick DL; Cummings JF; Grood ES; Holden JP; Feder SM; Butler DL
    J Biomech; 1996 Apr; 29(4):557-61. PubMed ID: 8964786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies.
    Ravary B; Pourcelot P; Bortolussi C; Konieczka S; Crevier-Denoix N
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):433-47. PubMed ID: 15182978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of an implantable force transducer (IFT) in a patellar tendon model.
    Glos DL; Butler DL; Grood ES; Levy MS
    J Biomech Eng; 1993 Nov; 115(4A):335-43. PubMed ID: 8309226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting sensitivity of a transducer for measuring anterior cruciate ligament force.
    Holden JP; Grood ES; Cummings JF
    J Biomech; 1995 Jan; 28(1):99-102. PubMed ID: 7852447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing the output of an implantable force transducer.
    Fleming BC; Peura GD; Beynnon BD
    J Biomech; 2000 Jul; 33(7):889-93. PubMed ID: 10831764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical analysis of an implantable force transducer for tendon and ligament structures.
    Xu WS; Butler DL; Stouffer DC; Grood ES; Glos DL
    J Biomech Eng; 1992 May; 114(2):170-7. PubMed ID: 1602759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo forces used to develop design parameters for tissue engineered implants for rabbit patellar tendon repair.
    Juncosa N; West JR; Galloway MT; Boivin GP; Butler DL
    J Biomech; 2003 Apr; 36(4):483-8. PubMed ID: 12600338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human patellar tendon moment arm length: measurement considerations and clinical implications for joint loading assessment.
    Tsaopoulos DE; Baltzopoulos V; Maganaris CN
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):657-67. PubMed ID: 16624460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo forces during remodeling of a two-segment anterior cruciate ligament graft in a goat model.
    Lundberg WR; Lewis JL; Smith JJ; Lindquist C; Meglitsch T; Lew WD; Poff BC
    J Orthop Res; 1997 Sep; 15(5):645-51. PubMed ID: 9420591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable telemetry device to measure intra-articular tibial forces.
    D'Lima DD; Townsend CP; Arms SW; Morris BA; Colwell CW
    J Biomech; 2005 Feb; 38(2):299-304. PubMed ID: 15598457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel force transducer for the measurement of tendon force in vivo.
    Platt D; Wilson AM; Timbs A; Wright IM; Goodship AE
    J Biomech; 1994 Dec; 27(12):1489-93. PubMed ID: 7806556
    [No Abstract]   [Full Text] [Related]  

  • 17. The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion.
    Defrate LE; Nha KW; Papannagari R; Moses JM; Gill TJ; Li G
    J Biomech; 2007; 40(8):1716-22. PubMed ID: 17070815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patellar tendon bearing brace: combined effect of heel clearance and ankle status on foot plantar pressure.
    Alimerzaloo F; Kashani RV; Saeedi H; Farzi M; Fallahian N
    Prosthet Orthot Int; 2014 Feb; 38(1):34-8. PubMed ID: 23690286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations to landing technique and patellar tendon loading in response to fatigue.
    Edwards S; Steele JR; Purdam CR; Cook JL; McGhee DE
    Med Sci Sports Exerc; 2014 Feb; 46(2):330-40. PubMed ID: 23852266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patellar tendon adaptation in relation to load-intensity and contraction type.
    Malliaras P; Kamal B; Nowell A; Farley T; Dhamu H; Simpson V; Morrissey D; Langberg H; Maffulli N; Reeves ND
    J Biomech; 2013 Jul; 46(11):1893-9. PubMed ID: 23773532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.