These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9119835)

  • 1. Comment on "Role of muscle belly and tendon of soleus gastrocnemius and plantaris in mechanical energy absorbtion and generation during cat locomotion".
    Solomonow M
    J Biomech; 1997 Mar; 30(3):307, 309. PubMed ID: 9119835
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.
    Prilutsky BI; Herzog W; Leonard TR; Allinger TL
    J Biomech; 1996 Apr; 29(4):417-34. PubMed ID: 8964771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force-length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles.
    Herzog W; Leonard TR; Renaud JM; Wallace J; Chaki G; Bornemisza S
    J Biomech; 1992 Nov; 25(11):1329-35. PubMed ID: 1400534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-force relation in dynamically contracting cat plantaris muscle.
    Herzog W; Sokolosky J; Zhang YT; Guimarães AC
    J Electromyogr Kinesiol; 1998 Jun; 8(3):147-55. PubMed ID: 9678149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forces in gastrocnemius, soleus, and plantaris tendons of the freely moving cat.
    Herzog W; Leonard TR; Guimaraes AC
    J Biomech; 1993 Aug; 26(8):945-53. PubMed ID: 8349719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional morphology of the ankle extensor muscle-tendon units in the springhare Pedetes capensis shows convergent evolution with macropods for bipedal hopping locomotion.
    Veiga GN; Biewener AA; Fuller A; van de Ven TMFN; McGowan CP; Panaino W; Snelling EP
    J Anat; 2020 Sep; 237(3):568-578. PubMed ID: 32584456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soleus forces and soleus force potential during unrestrained cat locomotion.
    Herzog W; Leonard TR
    J Biomech; 1996 Mar; 29(3):271-9. PubMed ID: 8850634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between ankle muscle and joint kinetics during the stance phase of locomotion in the cat.
    Fowler EG; Gregor RJ; Hodgson JA; Roy RR
    J Biomech; 1993; 26(4-5):465-83. PubMed ID: 8478350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscular force in running turkeys: the economy of minimizing work.
    Roberts TJ; Marsh RL; Weyand PG; Taylor CR
    Science; 1997 Feb; 275(5303):1113-5. PubMed ID: 9027309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to find aponeurosis and tendon stiffness and the onset of muscle contraction.
    Delgado-Lezama R; Raya JG; Muñoz-Martínez EJ
    J Neurosci Methods; 1997 Dec; 78(1-2):125-32. PubMed ID: 9497008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.
    Sawicki GS; Robertson BD; Azizi E; Roberts TJ
    J Exp Biol; 2015 Oct; 218(Pt 19):3150-9. PubMed ID: 26232413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of leg muscle function in tammar wallabies (M. eugenii) during level versus incline hopping.
    Biewener AA; McGowan C; Card GM; Baudinette RV
    J Exp Biol; 2004 Jan; 207(Pt 2):211-23. PubMed ID: 14668306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force summation between muscles: are muscles independent actuators?
    Sandercock TG; Maas H
    Med Sci Sports Exerc; 2009 Jan; 41(1):184-90. PubMed ID: 19092690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power amplification in an isolated muscle-tendon unit is load dependent.
    Sawicki GS; Sheppard P; Roberts TJ
    J Exp Biol; 2015 Nov; 218(Pt 22):3700-9. PubMed ID: 26449973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telemetry system to record force and EMG from cat ankle extensor and tibialis anterior muscles.
    Herzog W; Stano A; Leonard TR
    J Biomech; 1993 Dec; 26(12):1463-71. PubMed ID: 8308051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofascial force transmission in dynamic muscle conditions: effects of dynamic shortening of a single head of multi-tendoned rat extensor digitorum longus muscle.
    Maas H; Huijing PA
    Eur J Appl Physiol; 2005 Aug; 94(5-6):584-92. PubMed ID: 15952026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic tracking of medial gastrocnemius fascicle length during human locomotion.
    Cronin NJ; Carty CP; Barrett RS; Lichtwark G
    J Appl Physiol (1985); 2011 Nov; 111(5):1491-6. PubMed ID: 21836045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Coupling Between Muscle-Tendon Units Reduces Peak Stresses.
    Maas H; Finni T
    Exerc Sport Sci Rev; 2018 Jan; 46(1):26-33. PubMed ID: 28857890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.