BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9120054)

  • 1. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Feb; 378(1):50-69. PubMed ID: 9120054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens.
    Marín O; González A; Smeets WJ
    J Comp Neurol; 1997 Feb; 378(1):16-49. PubMed ID: 9120053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs.
    Márin O; Smeets WJ; González A
    J Comp Neurol; 1997 Jul; 383(3):349-69. PubMed ID: 9205046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens.
    Marín O; González A; Smeets WJ
    J Comp Neurol; 1997 Mar; 380(1):23-50. PubMed ID: 9073081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the basal ganglia of amphibians: dopaminergic mesostriatal projections.
    González A; Muñoz M; Muñoz A; Marin O; Smeets WJ
    Eur J Morphol; 1994 Aug; 32(2-4):271-4. PubMed ID: 7803178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord.
    Sánchez-Camacho C; Marín O; Smeets WJ; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):209-32. PubMed ID: 11331525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution and origin of the catecholaminergic innervation in the amphibian mesencephalic tectum.
    Sánchez-Camacho C; Marín O; González A
    Vis Neurosci; 2002; 19(3):321-33. PubMed ID: 12392181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians.
    Marín O; Smeets WJ; Muñoz M; Sanchez-Camacho C; Peña JJ; Lopez JM; González A
    Eur J Morphol; 1999 Apr; 37(2-3):155-9. PubMed ID: 10342448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin.
    Sánchez-Camacho C; Marín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2001 May; 434(2):186-208. PubMed ID: 11331524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians.
    Sánchez-Camacho C; Marín O; López JM; Moreno N; Smeets WJ; ten Donkelaar HJ; González A
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):325-30. PubMed ID: 11922982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system.
    López JM; Morona R; González A
    J Chem Neuroanat; 2010 Dec; 40(4):325-38. PubMed ID: 20887782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians.
    Marín O; Smeets WJ; González A
    J Comp Neurol; 1997 Jun; 382(4):499-534. PubMed ID: 9184996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii.
    Gonzalez A; Smeets WJ
    J Comp Neurol; 1991 Jan; 303(3):457-77. PubMed ID: 1672535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry.
    López JM; Morona R; Moreno N; Domínguez L; González A
    Neurosci Lett; 2007 Sep; 425(2):73-7. PubMed ID: 17822845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a mesolimbic pathway in anuran amphibians: a combined tract-tracing/immunohistochemical study.
    Marín O; González A; Smeets WJ
    Neurosci Lett; 1995 May; 190(3):183-6. PubMed ID: 7637889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study.
    Sánchez-Camacho C; Peña JJ; González A
    J Comp Neurol; 2003 Jan; 455(3):310-23. PubMed ID: 12483684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs.
    Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A
    J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal forebrain cholinergic system of the anuran amphibian Rana perezi: evidence for a shared organization pattern with amniotes.
    Sánchez-Camacho C; López JM; González A
    J Comp Neurol; 2006 Feb; 494(6):961-75. PubMed ID: 16385484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions.
    Morona R; González A
    J Comp Neurol; 2008 Nov; 511(2):187-220. PubMed ID: 18781620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.