These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 9120761)
1. Intestinal brush-border membrane transport of monocarboxylic acids mediated by proton-coupled transport and anion antiport mechanisms. Tamai I; Takanaga H; Maeda H; Yabuuchi H; Sai Y; Suzuki Y; Tsuji A J Pharm Pharmacol; 1997 Jan; 49(1):108-12. PubMed ID: 9120761 [TBL] [Abstract][Full Text] [Related]
2. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511 [TBL] [Abstract][Full Text] [Related]
3. Anion antiport mechanism is involved in transport of lactic acid across intestinal epithelial brush-border membrane. Tamai I; Ogihara T; Takanaga H; Maeda H; Tsuji A Biochim Biophys Acta; 2000 Sep; 1468(1-2):285-92. PubMed ID: 11018672 [TBL] [Abstract][Full Text] [Related]
4. Proton-cotransport of pravastatin across intestinal brush-border membrane. Tamai I; Takanaga H; Maeda H; Ogihara T; Yoneda M; Tsuji A Pharm Res; 1995 Nov; 12(11):1727-32. PubMed ID: 8592677 [TBL] [Abstract][Full Text] [Related]
5. Participation of monocarboxylic anion and bicarbonate exchange system for the transport of acetic acid and monocarboxylic acid drugs in the small intestinal brush-border membrane vesicles. Simanjuntak MT; Terasaki T; Tamai I; Tsuji A J Pharmacobiodyn; 1991 Sep; 14(9):501-8. PubMed ID: 1779404 [TBL] [Abstract][Full Text] [Related]
6. Possible role of anion exchanger AE2 as the intestinal monocarboxylic acid/anion antiporter. Yabuuchi H; Tamai I; Sai Y; Tsuji A Pharm Res; 1998 Mar; 15(3):411-6. PubMed ID: 9563070 [TBL] [Abstract][Full Text] [Related]
7. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. Simanjuntak MT; Tamai I; Terasaki T; Tsuji A J Pharmacobiodyn; 1990 May; 13(5):301-9. PubMed ID: 2273446 [TBL] [Abstract][Full Text] [Related]
8. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. Tsuji A; Tamai I; Nakanishi M; Terasaki T; Hamano S J Pharm Pharmacol; 1993 Nov; 45(11):996-8. PubMed ID: 7908046 [TBL] [Abstract][Full Text] [Related]
10. Oxalate transport by anion exchange across rabbit ileal brush border. Knickelbein RG; Aronson PS; Dobbins JW J Clin Invest; 1986 Jan; 77(1):170-5. PubMed ID: 3003149 [TBL] [Abstract][Full Text] [Related]
11. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids. Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755 [TBL] [Abstract][Full Text] [Related]
12. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Knickelbein R; Aronson PS; Schron CM; Seifter J; Dobbins JW Am J Physiol; 1985 Aug; 249(2 Pt 1):G236-45. PubMed ID: 3927745 [TBL] [Abstract][Full Text] [Related]
13. Down-regulated in adenoma mediates apical Cl-/HCO3- exchange in rabbit, rat, and human duodenum. Jacob P; Rossmann H; Lamprecht G; Kretz A; Neff C; Lin-Wu E; Gregor M; Groneberg DA; Kere J; Seidler U Gastroenterology; 2002 Mar; 122(3):709-24. PubMed ID: 11875004 [TBL] [Abstract][Full Text] [Related]
14. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979 [TBL] [Abstract][Full Text] [Related]
15. Characterization and chemical modification of the Na(+)-dependent bile-acid transport system in brush-border membrane vesicles from rabbit ileum. Kramer W; Nicol SB; Girbig F; Gutjahr U; Kowalewski S; Fasold H Biochim Biophys Acta; 1992 Oct; 1111(1):93-102. PubMed ID: 1390867 [TBL] [Abstract][Full Text] [Related]
16. Carrier-mediated transport of monocarboxylic acids in primary cultured epithelial cells from rabbit oral mucosa. Utoguchi N; Watanabe Y; Suzuki T; Maehara J; Matsumoto Y; Matsumoto M Pharm Res; 1997 Mar; 14(3):320-4. PubMed ID: 9098874 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of cefdinir uptake by rabbit small intestinal brush-border membrane vesicles. Kitagawa S; Sugaya Y; Kaseda Y; Sato S J Pharm Pharmacol; 1997 May; 49(5):516-9. PubMed ID: 9178187 [TBL] [Abstract][Full Text] [Related]
19. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism. Tsuji A; Takanaga H; Tamai I; Terasaki T Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053 [TBL] [Abstract][Full Text] [Related]
20. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles. Schron CM; Washington C; Blitzer BL J Clin Invest; 1985 Nov; 76(5):2030-3. PubMed ID: 4056063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]