These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 9121459)

  • 1. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation.
    Kline MP; Morimoto RI
    Mol Cell Biol; 1997 Apr; 17(4):2107-15. PubMed ID: 9121459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive.
    Shi Y; Kroeger PE; Morimoto RI
    Mol Cell Biol; 1995 Aug; 15(8):4309-18. PubMed ID: 7623825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta.
    Chu B; Zhong R; Soncin F; Stevenson MA; Calderwood SK
    J Biol Chem; 1998 Jul; 273(29):18640-6. PubMed ID: 9660838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activation of heat shock factor HSF1 probed by phosphopeptide analysis of factor 32P-labeled in vivo.
    Xia W; Guo Y; Vilaboa N; Zuo J; Voellmy R
    J Biol Chem; 1998 Apr; 273(15):8749-55. PubMed ID: 9535852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of human heat shock factor 1 activity at control temperature by phosphorylation.
    Knauf U; Newton EM; Kyriakis J; Kingston RE
    Genes Dev; 1996 Nov; 10(21):2782-93. PubMed ID: 8946918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.
    Sarge KD; Murphy SP; Morimoto RI
    Mol Cell Biol; 1993 Mar; 13(3):1392-407. PubMed ID: 8441385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular chaperones as HSF1-specific transcriptional repressors.
    Shi Y; Mosser DD; Morimoto RI
    Genes Dev; 1998 Mar; 12(5):654-66. PubMed ID: 9499401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis.
    Chou SD; Prince T; Gong J; Calderwood SK
    PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress.
    Guettouche T; Boellmann F; Lane WS; Voellmy R
    BMC Biochem; 2005 Mar; 6():4. PubMed ID: 15760475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1.
    Holmberg CI; Hietakangas V; Mikhailov A; Rantanen JO; Kallio M; Meinander A; Hellman J; Morrice N; MacKintosh C; Morimoto RI; Eriksson JE; Sistonen L
    EMBO J; 2001 Jul; 20(14):3800-10. PubMed ID: 11447121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative regulation of the heat shock transcriptional response by HSBP1.
    Satyal SH; Chen D; Fox SG; Kramer JM; Morimoto RI
    Genes Dev; 1998 Jul; 12(13):1962-74. PubMed ID: 9649501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function.
    Green M; Schuetz TJ; Sullivan EK; Kingston RE
    Mol Cell Biol; 1995 Jun; 15(6):3354-62. PubMed ID: 7760831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1.
    Xavier IJ; Mercier PA; McLoughlin CM; Ali A; Woodgett JR; Ovsenek N
    J Biol Chem; 2000 Sep; 275(37):29147-52. PubMed ID: 10856293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of human heat shock transcription factors 1 and 2 in HeLa cells and yeast.
    Yuan CX; Czarnecka-Verner E; Gurley WB
    Cell Stress Chaperones; 1997 Dec; 2(4):263-75. PubMed ID: 9495283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1.
    Hietakangas V; Ahlskog JK; Jakobsson AM; Hellesuo M; Sahlberg NM; Holmberg CI; Mikhailov A; Palvimo JJ; Pirkkala L; Sistonen L
    Mol Cell Biol; 2003 Apr; 23(8):2953-68. PubMed ID: 12665592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential targets for HSF1 within the preinitiation complex.
    Yuan CX; Gurley WB
    Cell Stress Chaperones; 2000 Jul; 5(3):229-42. PubMed ID: 11005381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation.
    Budzyński MA; Puustinen MC; Joutsen J; Sistonen L
    Mol Cell Biol; 2015 Jul; 35(14):2530-40. PubMed ID: 25963659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress.
    Newton EM; Knauf U; Green M; Kingston RE
    Mol Cell Biol; 1996 Mar; 16(3):839-46. PubMed ID: 8622685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.