These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9122162)

  • 1. From phosphatases to vanadium peroxidases: a similar architecture of the active site.
    Hemrika W; Renirie R; Dekker HL; Barnett P; Wever R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2145-9. PubMed ID: 9122162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease.
    Hemrika W; Wever R
    FEBS Lett; 1997 Jun; 409(3):317-9. PubMed ID: 9224681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
    Littlechild J; Garcia-Rodriguez E; Dalby A; Isupov M
    J Mol Recognit; 2002; 15(5):291-6. PubMed ID: 12447906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane topology of glucose-6-phosphatase.
    Pan CJ; Lei KJ; Annabi B; Hemrika W; Chou JY
    J Biol Chem; 1998 Mar; 273(11):6144-8. PubMed ID: 9497333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms.
    Renirie R; Hemrika W; Wever R
    J Biol Chem; 2000 Apr; 275(16):11650-7. PubMed ID: 10766783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a novel phosphatase sequence motif.
    Stukey J; Carman GM
    Protein Sci; 1997 Feb; 6(2):469-72. PubMed ID: 9041652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases.
    Neuwald AF
    Protein Sci; 1997 Aug; 6(8):1764-7. PubMed ID: 9260289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.
    Bozzo GG; Raghothama KG; Plaxton WC
    Eur J Biochem; 2002 Dec; 269(24):6278-86. PubMed ID: 12473124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium.
    Tanaka N; Dumay V; Liao Q; Lange AJ; Wever R
    Eur J Biochem; 2002 Apr; 269(8):2162-7. PubMed ID: 11985594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A.
    Shelly LL; Lei KJ; Pan CJ; Sakata SF; Ruppert S; Schutz G; Chou JY
    J Biol Chem; 1993 Oct; 268(29):21482-5. PubMed ID: 8407995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.
    Thaller MC; Schippa S; Rossolini GM
    Protein Sci; 1998 Jul; 7(7):1647-52. PubMed ID: 9684901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities.
    Zambonelli C; Casali M; Roberts MF
    J Biol Chem; 2003 Dec; 278(52):52282-9. PubMed ID: 14557260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the chemistry and biology of vanadium-dependent haloperoxidases.
    Winter JM; Moore BS
    J Biol Chem; 2009 Jul; 284(28):18577-81. PubMed ID: 19363038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two new mutations in the glucose-6-phosphatase gene cause glycogen storage disease in Hungarian patients.
    Parvari R; Lei KJ; Szonyi L; Narkis G; Moses S; Chou JY
    Eur J Hum Genet; 1997; 5(4):191-5. PubMed ID: 9359038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of glycogen storage disease type 1a: structure and function analysis of mutations in glucose-6-phosphatase.
    Shieh JJ; Terzioglu M; Hiraiwa H; Marsh J; Pan CJ; Chen LY; Chou JY
    J Biol Chem; 2002 Feb; 277(7):5047-53. PubMed ID: 11739393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of Acid phosphatases.
    Araujo CL; Vihko PT
    Methods Mol Biol; 2013; 1053():155-66. PubMed ID: 23860654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.
    Fan J; Jiang D; Zhao Y; Liu J; Zhang XC
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7636-40. PubMed ID: 24821770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary studies of liver glucose-6-phosphatase in von Gierke's disease.
    HARRIS RC
    AMA Am J Dis Child; 1952 Nov; 84(5):627-8. PubMed ID: 12984830
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction.
    de Macedo-Ribeiro S; Renirie R; Wever R; Messerschmidt A
    Biochemistry; 2008 Jan; 47(3):929-34. PubMed ID: 18163651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a.
    Lei KJ; Pan CJ; Liu JL; Shelly LL; Chou JY
    J Biol Chem; 1995 May; 270(20):11882-6. PubMed ID: 7744838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.