These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9122162)

  • 41. The trigonal-bipyramidal NO4 ligand set in biologically relevant vanadium compounds and their inorganic models.
    Rehder D
    J Inorg Biochem; 2008; 102(5-6):1152-8. PubMed ID: 18255153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrasteric regulation of protein kinases and phosphatases.
    Kemp BE; Pearson RB
    Biochim Biophys Acta; 1991 Aug; 1094(1):67-76. PubMed ID: 1653024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First structure of a eukaryotic phosphohistidine phosphatase.
    Busam RD; Thorsell AG; Flores A; Hammarström M; Persson C; Hallberg BM
    J Biol Chem; 2006 Nov; 281(45):33830-4. PubMed ID: 16990267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a novel missense mutation (T16A) in the glucose-6-phosphatase gene in a Taiwan Chinese patient with glycogen storage disease Ia (Von Gierke disease).
    Wu MC; Tsai FJ; Le CC; Lin SP; Wu JY
    Hum Mutat; 2000 Apr; 15(4):390. PubMed ID: 10738005
    [No Abstract]   [Full Text] [Related]  

  • 45. A catalytic mechanism for the dual-specific phosphatases.
    Denu JM; Dixon JE
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5910-4. PubMed ID: 7597052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human HAD phosphatases: structure, mechanism, and roles in health and disease.
    Seifried A; Schultz J; Gohla A
    FEBS J; 2013 Jan; 280(2):549-71. PubMed ID: 22607316
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.
    Isupov MN; Dalby AR; Brindley AA; Izumi Y; Tanabe T; Murshudov GN; Littlechild JA
    J Mol Biol; 2000 Jun; 299(4):1035-49. PubMed ID: 10843856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.
    Kulis-Horn RK; Rückert C; Kalinowski J; Persicke M
    BMC Microbiol; 2017 Jul; 17(1):161. PubMed ID: 28720084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase.
    Minagawa T; Ijuin T; Mochizuki Y; Takenawa T
    J Biol Chem; 2001 Jun; 276(25):22011-5. PubMed ID: 11274189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycogen storage (von Gierke's) disease predominantly involving the heart report of a case with histochemical phosphatase studies.
    WACHSTEIN M
    Am J Med Sci; 1947 Oct; 214(4):401-9. PubMed ID: 20266938
    [No Abstract]   [Full Text] [Related]  

  • 51. X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution.
    Weyand M; Hecht H; Kiess M; Liaud M; Vilter H; Schomburg D
    J Mol Biol; 1999 Oct; 293(3):595-611. PubMed ID: 10543953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The SH2 domains of inositol polyphosphate 5-phosphatases SHIP1 and SHIP2 have similar ligand specificity but different binding kinetics.
    Zhang Y; Wavreille AS; Kunys AR; Pei D
    Biochemistry; 2009 Nov; 48(46):11075-83. PubMed ID: 19839650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An immunoreceptor tyrosine-based inhibitory motif, with serine at site Y-2, binds SH2-domain-containing phosphatases.
    Philosof-Oppenheimer R; Hampe CS; Schlessinger K; Fridkin M; Pecht I
    Eur J Biochem; 2000 Feb; 267(3):703-11. PubMed ID: 10651806
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis.
    Whisstock JC; Romero S; Gurung R; Nandurkar H; Ooms LM; Bottomley SP; Mitchell CA
    J Biol Chem; 2000 Nov; 275(47):37055-61. PubMed ID: 10962003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heterogeneity of acid phosphatase activity in human polymorphonuclear leukocytes.
    Luis J; Convit J
    Clin Chim Acta; 1973 Feb; 44(1):21-31. PubMed ID: 4350567
    [No Abstract]   [Full Text] [Related]  

  • 56. Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases.
    Colin C; Leblanc C; Michel G; Wagner E; Leize-Wagner E; Van Dorsselaer A; Potin P
    J Biol Inorg Chem; 2005 Mar; 10(2):156-66. PubMed ID: 15747134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In islet-specific glucose-6-phosphatase-related protein, the beta cell antigenic sequence that is targeted in diabetes is not responsible for the loss of phosphohydrolase activity.
    Shieh JJ; Pan CJ; Mansfield BC; Chou JY
    Diabetologia; 2005 Sep; 48(9):1851-9. PubMed ID: 16012821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties of type II inositol polyphosphate 5-phosphatase.
    Jefferson AB; Majerus PW
    J Biol Chem; 1995 Apr; 270(16):9370-7. PubMed ID: 7721860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases.
    Lee YH; Ogata C; Pflugrath JW; Levitt DG; Sarma R; Banaszak LJ; Pilkis SJ
    Biochemistry; 1996 May; 35(19):6010-9. PubMed ID: 8634242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131.
    Lu Z; Dunaway-Mariano D; Allen KN
    Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.