BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9122385)

  • 1. Predicting breast cancer invasion with artificial neural networks on the basis of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Iglehart JD; Floyd CE
    Radiology; 1997 Apr; 203(1):159-63. PubMed ID: 9122385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of breast cancer malignancy using an artificial neural network.
    Floyd CE; Lo JY; Yun AJ; Sullivan DC; Kornguth PJ
    Cancer; 1994 Dec; 74(11):2944-8. PubMed ID: 7954258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network: improving the quality of breast biopsy recommendations.
    Baker JA; Kornguth PJ; Lo JY; Floyd CE
    Radiology; 1996 Jan; 198(1):131-5. PubMed ID: 8539365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer.
    Wu Y; Giger ML; Doi K; Vyborny CJ; Schmidt RA; Metz CE
    Radiology; 1993 Apr; 187(1):81-7. PubMed ID: 8451441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.
    Jesneck JL; Lo JY; Baker JA
    Radiology; 2007 Aug; 244(2):390-8. PubMed ID: 17562812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided diagnosis of breast cancer: artificial neural network approach for optimized merging of mammographic features.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1995 Oct; 2(10):841-50. PubMed ID: 9419649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon.
    Baker JA; Kornguth PJ; Lo JY; Williford ME; Floyd CE
    Radiology; 1995 Sep; 196(3):817-22. PubMed ID: 7644649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Case-based reasoning computer algorithm that uses mammographic findings for breast biopsy decisions.
    Floyd CE; Lo JY; Tourassi GD
    AJR Am J Roentgenol; 2000 Nov; 175(5):1347-52. PubMed ID: 11044039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.
    Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM
    Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of missing data in evaluating artificial neural networks trained on complete data.
    Markey MK; Tourassi GD; Margolis M; DeLong DM
    Comput Biol Med; 2006 May; 36(5):516-25. PubMed ID: 15893745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of patient history data on the prediction of breast cancer from mammographic findings with artificial neural networks.
    Lo JY; Baker JA; Kornguth PJ; Floyd CE
    Acad Radiol; 1999 Jan; 6(1):10-5. PubMed ID: 9891147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and neural models for classifying breast masses.
    Fogel DB; Wasson EC; Boughton EM; Porto VW; Angeline PJ
    IEEE Trans Med Imaging; 1998 Jun; 17(3):485-8. PubMed ID: 9735913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between computer-aided diagnosis of breast masses and that of calcifications.
    Markey MK; Lo JY; Floyd CE
    Radiology; 2002 May; 223(2):489-93. PubMed ID: 11997558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with BI-RADS lexicon.
    Bilska-Wolak AO; Floyd CE
    Med Phys; 2002 Sep; 29(9):2090-100. PubMed ID: 12349930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignant and benign clustered microcalcifications: automated feature analysis and classification.
    Jiang Y; Nishikawa RM; Wolverton DE; Metz CE; Giger ML; Schmidt RA; Vyborny CJ; Doi K
    Radiology; 1996 Mar; 198(3):671-8. PubMed ID: 8628853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer.
    Kahn CE; Roberts LM; Wang K; Jenks D; Haddawy P
    Proc Annu Symp Comput Appl Med Care; 1995; ():208-12. PubMed ID: 8563269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing Breast Cancer Risk with an Artificial Neural Network.
    Sepandi M; Taghdir M; Rezaianzadeh A; Rahimikazerooni S
    Asian Pac J Cancer Prev; 2018 Apr; 19(4):1017-1019. PubMed ID: 29693975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a Bayesian network to predict the probability and type of breast cancer represented by microcalcifications on mammography.
    Burnside ES; Rubin DL; Shachter RD
    Stud Health Technol Inform; 2004; 107(Pt 1):13-7. PubMed ID: 15360765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer risk estimation with artificial neural networks revisited: discrimination and calibration.
    Ayer T; Alagoz O; Chhatwal J; Shavlik JW; Kahn CE; Burnside ES
    Cancer; 2010 Jul; 116(14):3310-21. PubMed ID: 20564067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.