These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 9122792)
1. Effect of test environment on intervertebral disc hydration. Pflaster DS; Krag MH; Johnson CC; Haugh LD; Pope MH Spine (Phila Pa 1976); 1997 Jan; 22(2):133-9. PubMed ID: 9122792 [TBL] [Abstract][Full Text] [Related]
2. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Costi JJ; Hearn TC; Fazzalari NL Clin Biomech (Bristol); 2002 Jul; 17(6):446-55. PubMed ID: 12135546 [TBL] [Abstract][Full Text] [Related]
3. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Lee CR; Iatridis JC; Poveda L; Alini M Spine (Phila Pa 1976); 2006 Mar; 31(5):515-22. PubMed ID: 16508544 [TBL] [Abstract][Full Text] [Related]
4. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. Chuang SY; Popovich JM; Lin LC; Hedman TP Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899 [TBL] [Abstract][Full Text] [Related]
5. Effect of frozen storage on the creep behavior of human intervertebral discs. Dhillon N; Bass EC; Lotz JC Spine (Phila Pa 1976); 2001 Apr; 26(8):883-8. PubMed ID: 11317110 [TBL] [Abstract][Full Text] [Related]
6. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc. Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622 [TBL] [Abstract][Full Text] [Related]
7. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Frei H; Oxland TR; Rathonyi GC; Nolte LP Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883 [TBL] [Abstract][Full Text] [Related]
8. Flow-related mechanics of the intervertebral disc: the validity of an in vitro model. van der Veen AJ; Mullender M; Smit TH; Kingma I; van Dieën JH Spine (Phila Pa 1976); 2005 Sep; 30(18):E534-9. PubMed ID: 16166881 [TBL] [Abstract][Full Text] [Related]
9. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Velísková P; Bashkuev M; Shirazi-Adl A; Schmidt H J Biomech; 2018 Mar; 70():16-25. PubMed ID: 29132725 [TBL] [Abstract][Full Text] [Related]
10. Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading. Zehra U; Robson-Brown K; Adams MA; Dolan P Spine (Phila Pa 1976); 2015 Aug; 40(15):1173-80. PubMed ID: 25893360 [TBL] [Abstract][Full Text] [Related]
11. Measurements of proteoglycan and water content distribution in human lumbar intervertebral discs. Iatridis JC; MacLean JJ; O'Brien M; Stokes IA Spine (Phila Pa 1976); 2007 Jun; 32(14):1493-7. PubMed ID: 17572617 [TBL] [Abstract][Full Text] [Related]
12. Vascularization and morphological changes of the endplate after axial compression and distraction of the intervertebral disc. Hee HT; Chuah YJ; Tan BH; Setiobudi T; Wong HK Spine (Phila Pa 1976); 2011 Apr; 36(7):505-11. PubMed ID: 20975621 [TBL] [Abstract][Full Text] [Related]
13. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Rajasekaran S; Babu JN; Arun R; Armstrong BR; Shetty AP; Murugan S Spine (Phila Pa 1976); 2004 Dec; 29(23):2654-67. PubMed ID: 15564914 [TBL] [Abstract][Full Text] [Related]
14. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression. Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550 [TBL] [Abstract][Full Text] [Related]
15. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Urban JP; McMullin JF Spine (Phila Pa 1976); 1988 Feb; 13(2):179-87. PubMed ID: 3406838 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Koeller W; Meier W; Hartmann F Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843 [TBL] [Abstract][Full Text] [Related]
17. [An improved vertebral body replacement for the thoracolumbar spine. A biomechanical in vitro test on human lumbar vertebral bodies]. Reinhold M; Schmölz W; Canto F; Krappinger D; Blauth M; Knop C Unfallchirurg; 2007 Apr; 110(4):327-33. PubMed ID: 17211598 [TBL] [Abstract][Full Text] [Related]
18. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Acaroglu ER; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M Spine (Phila Pa 1976); 1995 Dec; 20(24):2690-701. PubMed ID: 8747247 [TBL] [Abstract][Full Text] [Related]
20. The analysis of axisymmetric viscoelasticity, time-dependent recovery, and hydration in rat tail intervertebral discs by radial compression test. Lin LC; Hedman TP; Wang SJ; Huoh M; Chang SY J Appl Biomech; 2009 May; 25(2):133-9. PubMed ID: 19483257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]