BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9123644)

  • 1. A high-frequency continuous-wave Doppler ultrasound system for the detection of blood flow in the microcirculation.
    Christopher DA; Burns PN; Armstrong J; Foster FS
    Ultrasound Med Biol; 1996; 22(9):1191-203. PubMed ID: 9123644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation.
    Christopher DA; Burns PN; Starkoski BG; Foster FS
    Ultrasound Med Biol; 1997; 23(7):997-1015. PubMed ID: 9330444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Validation of a new hand-carried ultrasound device equipped with directional color power Doppler and continuous wave Doppler].
    Kawai J; Tanabe K; Matsuzaki M; Yamaguchi K; Yagi T; Fujii Y; Konda T; Ui K; Sumida T; Okada M; Tani T; Morioka S
    J Cardiol; 2003 Oct; 42(4):173-82. PubMed ID: 14598719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of blood perfusion using ultrasound.
    Jansson T; Persson HW; Lindström K
    Proc Inst Mech Eng H; 1999; 213(2):91-106. PubMed ID: 10333683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.
    Kim D; Park SH
    J Endod; 2016 Nov; 42(11):1660-1666. PubMed ID: 27651041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frequency color flow imaging of the microcirculation.
    Goertz DE; Christopher DA; Yu JL; Kerbel RS; Burns PN; Foster FS
    Ultrasound Med Biol; 2000 Jan; 26(1):63-71. PubMed ID: 10687794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood perfusion measurement with multifrequency Doppler ultrasound.
    Eriksson R; Persson HW; Dymling SO; Lindström K
    Ultrasound Med Biol; 1995; 21(1):49-57. PubMed ID: 7754579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak velocity overestimation and linear-array spectral Doppler.
    Eicke BM; Kremkau FW; Hinson H; Tegeler CH
    J Neuroimaging; 1995 Apr; 5(2):115-21. PubMed ID: 7718938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for blood velocity measurements using ultrasound FMCW signals.
    Kunita M; Sudo M; Inoue S; Akahane M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1064-76. PubMed ID: 20442017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency 3-D color-flow imaging of the microcirculation.
    Goertz DE; Yu JL; Kerbel RS; Burns PN; Foster FS
    Ultrasound Med Biol; 2003 Jan; 29(1):39-51. PubMed ID: 12604116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frame rate doppler ultrasound bandwidth imaging for flow instability mapping.
    Yiu BYS; Chee AJY; Tang G; Luo W; Yu ACH
    Med Phys; 2019 Apr; 46(4):1620-1633. PubMed ID: 30734923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging.
    Zhou X; Kenwright DA; Wang S; Hossack JA; Hoskins PR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):53-65. PubMed ID: 27925588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.
    Pinter SZ; Lacefield JC
    Ultrasound Med Biol; 2009 Jul; 35(7):1217-28. PubMed ID: 19394752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very high frequency pulsed Doppler apparatus.
    Berson M; Patat F; Wang ZQ; Besse D; Pourcelot L
    Ultrasound Med Biol; 1989; 15(2):121-31. PubMed ID: 2658234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and Doppler angle-independent measurement of blood flow velocity in small-diameter vessels using ultrasound microbubbles.
    Roy HS; Zuo G; Luo Z; Wu H; Krupka TM; Ran H; Li P; Sun Y; Wang Z; Zheng Y
    Clin Imaging; 2012; 36(5):577-83. PubMed ID: 22920365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of spectral Doppler flow and tissue velocity measurements in ultrasound systems.
    Walker A; Olsson E; Wranne B; Ringqvist I; Ask P
    Ultrasound Med Biol; 2004 Jan; 30(1):127-32. PubMed ID: 14962617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Frequency Nonlinear Doppler Contrast-Enhanced Ultrasound Imaging of Blood Flow.
    Bruce M; Hannah A; Hammond R; Khaing ZZ; Tremblay-Darveau C; Burns PN; Hofstetter CP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1776-1784. PubMed ID: 32275589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doppler ultrasound technique for measuring capillary-speed flow velocities with strong stationary echoes.
    Ting TH; Newhouse VL; Li Y
    Ultrasonics; 1992; 30(4):225-31. PubMed ID: 1621288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the design of a capillary flow phantom for the evaluation of ultrasound contrast agents at very low flow velocities.
    Veltmann C; Lohmaier S; Schlosser T; Shai S; Ehlgen A; Pohl C; Becher H; Tiemann K
    Ultrasound Med Biol; 2002 May; 28(5):625-34. PubMed ID: 12079699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.