These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9124539)

  • 1. Carnitine effects on coenzyme A profiles in rat liver with hypoglycin inhibition of multiple dehydrogenases.
    Lieu YK; Hsu BY; Price WA; Corkey BE; Stanley CA
    Am J Physiol; 1997 Mar; 272(3 Pt 1):E359-66. PubMed ID: 9124539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spiropentaneacetic acid as a specific inhibitor of medium-chain acyl-CoA dehydrogenase.
    Tserng KY; Jin SJ; Hoppel CL
    Biochemistry; 1991 Nov; 30(44):10755-60. PubMed ID: 1931995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids.
    Brass EP; Beyerinck RA
    Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inactivation of various acyl-CoA dehydrogenases by (methylenecyclopropyl)acetyl-CoA.
    Ikeda Y; Tanaka K
    Biochim Biophys Acta; 1990 Apr; 1038(2):216-21. PubMed ID: 2331485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria.
    Lysiak W; Lilly K; DiLisa F; Toth PP; Bieber LL
    J Biol Chem; 1988 Jan; 263(3):1151-6. PubMed ID: 3335535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of general acyl-CoA dehydrogenase from pig kidney by a metabolite of hypoglycin A.
    Wenz A; Thorpe C; Ghisla S
    J Biol Chem; 1981 Oct; 256(19):9809-12. PubMed ID: 7275979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters.
    Chase JF; Tubbs PK
    Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of gluconeogenesis in isolated rat liver cells by methylenecyclopropylpyruvate (ketohypoglycin).
    Kean EA; Pogson CI
    Biochem J; 1979 Sep; 182(3):789-96. PubMed ID: 518564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M; Couée I; Pradet A; Raymond P
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective inhibition of acyl-CoA dehydrogenases by a metabolite of hypoglycin.
    Kean EA
    Biochim Biophys Acta; 1976 Jan; 422(1):8-14. PubMed ID: 1247597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of the inborn errors of mitochondrial fatty acid beta-oxidation deficiency].
    Zhu JM; Yang Z
    Beijing Da Xue Xue Bao Yi Xue Ban; 2006 Apr; 38(2):214-7. PubMed ID: 16617370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of the adverse chronic effects of the unsaturated derivative of valproic acid--2-n-propyl-4-pentenoic acid--on ketogenesis and liver coenzyme A metabolism by a single injection of pantothenate, carnitine, and acetylcysteine in developing mice.
    Thurston JH; Hauhart RE
    Pediatr Res; 1993 Jan; 33(1):72-6. PubMed ID: 8433865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intravenous L-carnitine and acetyl-L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency and isovaleric acidemia.
    Van Hove JL; Kahler SG; Millington DS; Roe DS; Chace DH; Heales SJ; Roe CR
    Pediatr Res; 1994 Jan; 35(1):96-101. PubMed ID: 8134205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: in vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles.
    van Kempen TA; Odle J
    J Nutr; 1995 Feb; 125(2):238-50. PubMed ID: 7861251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats.
    Kibayashi M; Nagao M; Chiba S
    Pediatr Int; 1999 Feb; 41(1):52-60. PubMed ID: 10200137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CoA-persulphide: a possible in vivo inhibitor of mammalian short-chain acyl-CoA dehydrogenase.
    Shaw L; Engel PC
    Biochim Biophys Acta; 1987 Jun; 919(2):171-4. PubMed ID: 3580384
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Qiu Y; Perry RJ; Camporez JG; Zhang XM; Kahn M; Cline GW; Shulman GI; Vatner DF
    Biochem J; 2018 Mar; 475(6):1063-1074. PubMed ID: 29483297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.