These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9124743)

  • 1. Geometric modeling of the human torso using cubic hermite elements.
    Bradley CP; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 1997; 25(1):96-111. PubMed ID: 9124743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of material properties and geometry on electrocardiographic forward simulations.
    Bradley CP; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 2000 Jul; 28(7):721-41. PubMed ID: 11016411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional finite element model of human atrial anatomy: new methods for cubic Hermite meshes with extraordinary vertices.
    Gonzales MJ; Sturgeon G; Krishnamurthy A; Hake J; Jonas R; Stark P; Rappel WJ; Narayan SM; Zhang Y; Segars WP; McCulloch AD
    Med Image Anal; 2013 Jul; 17(5):525-37. PubMed ID: 23602918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of an anatomically accurate geometric model of the forearm and hand musculo-skeletal system.
    Reynolds H; Smith N; Hunter PJ
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1829-32. PubMed ID: 17272065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-order coupled finite element/boundary element torso model.
    Pullan A
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):292-8. PubMed ID: 8682541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling.
    Krishnamurthy A; Gonzales MJ; Sturgeon G; Segars WP; McCulloch AD
    Comput Aided Geom Des; 2016 Mar; 43():27-38. PubMed ID: 27182096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The computational performance of a high-order coupled FEM/BEM procedure in electropotential problems.
    Bradley CP; Harris GM; Pullan AJ
    IEEE Trans Biomed Eng; 2001 Nov; 48(11):1238-50. PubMed ID: 11686623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of geometry and fibrous structure of the heart.
    Nielsen PM; Le Grice IJ; Smaill BH; Hunter PJ
    Am J Physiol; 1991 Apr; 260(4 Pt 2):H1365-78. PubMed ID: 2012234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting isovolumes from three-dimensional torso geometry using PROLOG.
    Replogle JA; Russomanno DJ; de Jongh AL; Claydon FJ
    IEEE Trans Inf Technol Biomed; 1998 Mar; 2(1):10-9. PubMed ID: 10719507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields.
    Ramon C; Wang Y; Haueisen J; Schimpf P; Jaruvatanadilok S; Ishimaru A
    Phys Med Biol; 2000 May; 45(5):1141-50. PubMed ID: 10843096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of variable thickness and fiber orientation of the skeletal muscle layer on electrocardiographic calculations.
    Stanley PC; Pilkington TC; Morrow MN; Ideker RE
    IEEE Trans Biomed Eng; 1991 Nov; 38(11):1069-76. PubMed ID: 1748441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax.
    Kinst TF; Sweeney MO; Lehr JL; Eisenberg SR
    J Cardiovasc Electrophysiol; 1997 May; 8(5):537-47. PubMed ID: 9160230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of a human head/neck/upper-torso replica to dynamic loading--II. Analytical/numerical model.
    Deng YC; Goldsmith W
    J Biomech; 1987; 20(5):487-97. PubMed ID: 3611123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies.
    Glidewell ME; Ng KT
    IEEE Trans Med Imaging; 1997 Oct; 16(5):572-80. PubMed ID: 9368112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Accurate Is Inverse Electrocardiographic Mapping? A Systematic In Vivo Evaluation.
    Bear LR; LeGrice IJ; Sands GB; Lever NA; Loiselle DS; Paterson DJ; Cheng LK; Smaill BH
    Circ Arrhythm Electrophysiol; 2018 May; 11(5):e006108. PubMed ID: 29700057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.