These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9125059)

  • 1. Significance of short tau inversion recovery magnetic resonance sequence in the management of skeletal injuries.
    Van Gelderen WF; al-Hindawi M; Gale RS; Steward AH; Archibald CG
    Australas Radiol; 1997 Feb; 41(1):13-5. PubMed ID: 9125059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short tau inversion recovery magnetic resonance imaging in occult scaphoid injuries: effect on management.
    Van Gelderen W; Gale RS; Steward AH
    Australas Radiol; 1998 Feb; 42(1):20-4. PubMed ID: 9509598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR diagnosis of bone contusions of the knee: comparison of coronal T2-weighted fast spin-echo with fat saturation and fast spin-echo STIR images with conventional STIR images.
    Arndt WF; Truax AL; Barnett FM; Simmons GE; Brown DC
    AJR Am J Roentgenol; 1996 Jan; 166(1):119-24. PubMed ID: 8571859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of skeletal and soft tissue injuries in and around the knee.
    Walker CW; Moore TE
    Radiol Clin North Am; 1997 May; 35(3):631-53. PubMed ID: 9167666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Value of MRI in diagnosing injuries after ankle sprains in children.
    Endele D; Jung C; Bauer G; Mauch F
    Foot Ankle Int; 2012 Dec; 33(12):1063-8. PubMed ID: 23199854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging features of fractures using the short tau inversion recovery (STIR) sequence: correlation with radiographic findings.
    Meyers SP; Wiener SN
    Skeletal Radiol; 1991; 20(7):499-507. PubMed ID: 1754911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Relevance of different sequences in MRI-detected subchondral bone damage of the knee joint and possible therapeutic options].
    Lahm A; Spank H; Mrosek E; Frauendorf H; Merk H
    Sportverletz Sportschaden; 2008 Mar; 22(1):38-44. PubMed ID: 18350483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of radiographically occult bony trauma.
    Anderson M
    West J Med; 1996; 165(1-2):58. PubMed ID: 8855692
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of bone contusions with fat-saturated fast spin-echo proton-density magnetic resonance imaging.
    Lal NR; Jamadar DA; Doi K; Newman JS; Adler RS; Uri DS; Kazerooni EA
    Can Assoc Radiol J; 2000 Jun; 51(3):182-5. PubMed ID: 10914084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early MRI in the management of clinical scaphoid fracture.
    Brydie A; Raby N
    Br J Radiol; 2003 May; 76(905):296-300. PubMed ID: 12763944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ["Occult" posttraumatic lesions of the knee: can magnetic resonance substitute for diagnostic arthroscopy?].
    Tamburrini O; Bianchi D; Capparelli G; Barresi D; Arcuri PP; Barbalace G; Stanà C
    Radiol Med; 1997 Nov; 94(5):433-9. PubMed ID: 9465206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short tau inversion recovery and three-point Dixon water-fat separation sequences in acute traumatic bone fractures at open 0.35 tesla MRI.
    Wohlgemuth WA; Roemer FW; Bohndorf K
    Skeletal Radiol; 2002 Jun; 31(6):343-8. PubMed ID: 12073118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subradiographic Foot and Ankle Fractures and Bone Contusions Detected by MRI in Elite Ice Hockey Players.
    Baker JC; Hoover EG; Hillen TJ; Smith MV; Wright RW; Rubin DA
    Am J Sports Med; 2016 May; 44(5):1317-23. PubMed ID: 26888876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnosis of scaphoid fracture and dedicated extremity MRI.
    Bretlau T; Christensen OM; Edström P; Thomsen HS; Lausten GS
    Acta Orthop Scand; 1999 Oct; 70(5):504-8. PubMed ID: 10622486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR imaging of occult traumatic fractures and muscular injuries of the hip and pelvis in elderly patients.
    May DA; Purins JL; Smith DK
    AJR Am J Roentgenol; 1996 May; 166(5):1075-8. PubMed ID: 8615246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR imaging of musculoskeletal trauma to the pelvis and the lower limb.
    Brossmann J; Biederer J; Heller M
    Eur Radiol; 1999; 9(2):183-91. PubMed ID: 10101636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging evaluation of temporomandibular joint and associated soft tissue changes following acute condylar injury.
    Dwivedi AN; Tripathi R; Gupta PK; Tripathi S; Garg S
    J Oral Maxillofac Surg; 2012 Dec; 70(12):2829-34. PubMed ID: 23141983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiographically occult scaphoid fractures: value of MR imaging in detection.
    Breitenseher MJ; Metz VM; Gilula LA; Gaebler C; Kukla C; Fleischmann D; Imhof H; Trattnig S
    Radiology; 1997 Apr; 203(1):245-50. PubMed ID: 9122402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine.
    Brandão S; Seixas D; Ayres-Basto M; Castro S; Neto J; Martins C; Ferreira JC; Parada F
    Clin Radiol; 2013 Nov; 68(11):e617-23. PubMed ID: 23932678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study.
    Schmidt GP; Wintersperger B; Graser A; Baur-Melnyk A; Reiser MF; Schoenberg SO
    Invest Radiol; 2007 Jun; 42(6):449-59. PubMed ID: 17507818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.