These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 9125179)
1. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form. Tanaka WT; Nakao N; Mikami T; Matsumoto T Biochem Biophys Res Commun; 1997 Mar; 232(2):350-3. PubMed ID: 9125179 [TBL] [Abstract][Full Text] [Related]
2. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. Li CR; Wang YM; De Zheng X; Liang HY; Tang JC; Wang Y J Cell Sci; 2005 Jun; 118(Pt 12):2637-48. PubMed ID: 15914538 [TBL] [Abstract][Full Text] [Related]
3. Csa2, a member of the Rbt5 protein family, is involved in the utilization of iron from human hemoglobin during Candida albicans hyphal growth. Okamoto-Shibayama K; Kikuchi Y; Kokubu E; Sato Y; Ishihara K FEMS Yeast Res; 2014 Jun; 14(4):674-7. PubMed ID: 24796871 [TBL] [Abstract][Full Text] [Related]
4. Hyphal formation of Candida albicans is controlled by electron transfer system. Watanabe T; Ogasawara A; Mikami T; Matsumoto T Biochem Biophys Res Commun; 2006 Sep; 348(1):206-11. PubMed ID: 16876761 [TBL] [Abstract][Full Text] [Related]
5. Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Pendrak ML; Roberts DD Med Mycol; 2007 Feb; 45(1):61-71. PubMed ID: 17325946 [TBL] [Abstract][Full Text] [Related]
6. [Analysis of the growth system of Candida albicans in a host and the development of new antifungal material]. Watanabe T Yakugaku Zasshi; 2003 Jul; 123(7):561-7. PubMed ID: 12875238 [TBL] [Abstract][Full Text] [Related]
7. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067 [TBL] [Abstract][Full Text] [Related]
8. Use of the Porcine Intestinal Epithelium (PIE)-Assay to analyze early stages of colonization by the human fungal pathogen Candida albicans. Wendland J; Hellwig D; Walther A; Sickinger S; Shadkchan Y; Martin R; Bauer J; Osherov N; Tretiakov A; Saluz HP J Basic Microbiol; 2006; 46(6):513-23. PubMed ID: 17139615 [TBL] [Abstract][Full Text] [Related]
9. Relationship between cell morphology and intracellular potassium concentration in Candida albicans. Watanabe H; Azuma M; Igarashi K; Ooshima H J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777 [TBL] [Abstract][Full Text] [Related]
10. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
11. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. Jayatilake JA; Samaranayake YH; Cheung LK; Samaranayake LP J Oral Pathol Med; 2006 Sep; 35(8):484-91. PubMed ID: 16918600 [TBL] [Abstract][Full Text] [Related]
12. Immunodetection of CD45 epitopes on the surface of Candida albicans cells in culture and infected human tissues. Monteagudo C; Lopez-Ribot JL; Murgui A; Casanova M; Chaffin WL; Martinez JP Am J Clin Pathol; 2000 Jan; 113(1):59-63. PubMed ID: 10631858 [TBL] [Abstract][Full Text] [Related]
13. Candida albicans protein analysis during hyphal differentiation using an integrative HA-tagging method. Lee KH; Jun S; Hur HS; Ryu JJ; Kim J Biochem Biophys Res Commun; 2005 Nov; 337(3):784-90. PubMed ID: 16212935 [TBL] [Abstract][Full Text] [Related]
14. Flow cytometry of Candida albicans for investigations of surface marker expression and phagocytosis. Warolin J; Essmann M; Larsen B Ann Clin Lab Sci; 2005; 35(3):302-11. PubMed ID: 16081588 [TBL] [Abstract][Full Text] [Related]
15. Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Umeyama T; Kaneko A; Nagai Y; Hanaoka N; Tanabe K; Takano Y; Niimi M; Uehara Y Mol Microbiol; 2005 Jan; 55(2):381-95. PubMed ID: 15659158 [TBL] [Abstract][Full Text] [Related]
17. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Hube B Curr Opin Microbiol; 2004 Aug; 7(4):336-41. PubMed ID: 15288621 [TBL] [Abstract][Full Text] [Related]
18. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. Uppuluri P; Mekala S; Chaffin WL Yeast; 2007 Aug; 24(8):681-93. PubMed ID: 17583896 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent surface expression of the beta-2-integrin analogue of Candida albicans and its role in adhesion to the human endothelium. Würzner R; Langgartner M; Spötl L; Eder A; Bujdáková H; Schröppel K; Dierich MP Exp Clin Immunogenet; 1996; 13(3-4):161-72. PubMed ID: 9165270 [TBL] [Abstract][Full Text] [Related]
20. LAAE-14, a new anti-inflammatory drug, increases the survival of Candida albicans-inoculated mice. Lucas R; Villamón E; Payá M; Alves M; del Olmo E; Gozalbo D; Gil ML FEMS Immunol Med Microbiol; 2004 Apr; 40(3):239-42. PubMed ID: 15039100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]