These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 9125216)
1. The yield of oxidative phosphorylation is controlled both by force and flux. Fontaine EM; Devin A; Rigoulet M; Leverve XM Biochem Biophys Res Commun; 1997 Mar; 232(2):532-5. PubMed ID: 9125216 [TBL] [Abstract][Full Text] [Related]
2. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial adaptations to steatohepatitis induced by a methionine- and choline-deficient diet. Romestaing C; Piquet MA; Letexier D; Rey B; Mourier A; Servais S; Belouze M; Rouleau V; Dautresme M; Ollivier I; Favier R; Rigoulet M; Duchamp C; Sibille B Am J Physiol Endocrinol Metab; 2008 Jan; 294(1):E110-9. PubMed ID: 17986629 [TBL] [Abstract][Full Text] [Related]
5. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria. Fontaine EM; Moussa M; Devin A; Garcia J; Ghisolfi J; Rigoulet M; Leverve XM Biochim Biophys Acta; 1996 Sep; 1276(3):181-7. PubMed ID: 8856103 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311 [TBL] [Abstract][Full Text] [Related]
7. Interrelationship between oxidative energy transformation and energy consumption at mitochondrial and cellular levels. Letko G; Küster U; Bohnensack R; Böhme G; Pohl K; Kunz W Acta Biol Med Ger; 1982; 41(9):735-50. PubMed ID: 6299035 [TBL] [Abstract][Full Text] [Related]
8. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Brand MD; Hafner RP; Brown GC Biochem J; 1988 Oct; 255(2):535-9. PubMed ID: 2849419 [TBL] [Abstract][Full Text] [Related]
9. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria. Fransvea E; La Piana G; Marzulli D; Lofrumento NE Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671 [TBL] [Abstract][Full Text] [Related]
11. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation]. Samartsev VN; Kozhina OV; Polishchuk LS Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057 [TBL] [Abstract][Full Text] [Related]
12. Top-down control analysis of temperature effect on oxidative phosphorylation. Dufour S; Rousse N; Canioni P; Diolez P Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Hafner RP; Brown GC; Brand MD Eur J Biochem; 1990 Mar; 188(2):313-9. PubMed ID: 2156698 [TBL] [Abstract][Full Text] [Related]
14. Modular kinetic analysis reveals differences in Cd2+ and Cu2+ ion-induced impairment of oxidative phosphorylation in liver. Ciapaite J; Nauciene Z; Baniene R; Wagner MJ; Krab K; Mildaziene V FEBS J; 2009 Jul; 276(13):3656-68. PubMed ID: 19496816 [TBL] [Abstract][Full Text] [Related]
15. Regulation of oxidative phosphorylation in the inner membrane of rat liver mitochondria by calcium ions. Evtodienko YV; Azarashvili TS; Teplova VV; Odinokova IV; Saris N Biochemistry (Mosc); 2000 Sep; 65(9):1023-6. PubMed ID: 11042493 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation. Fitton V; Rigoulet M; Ouhabi R; Guérin B Biochemistry; 1994 Aug; 33(32):9692-8. PubMed ID: 8068647 [TBL] [Abstract][Full Text] [Related]
17. Unaltered hepatic oxidative phosphorylation and mitochondrial permeability transition in wistar rats treated with nimesulide: Relevance for nimesulide toxicity characterization. Moreno AJ; Oliveira PJ; Nova CD; Alvaro AR; Moreira RA; Santos SM; Macedo T J Biochem Mol Toxicol; 2007; 21(2):53-61. PubMed ID: 17427176 [TBL] [Abstract][Full Text] [Related]