BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 912536)

  • 1. A new tracer method for the estimation of rates of bone formation and breakdown in man.
    Reeve J; Hesp R; Wootton R
    Calcif Tissue Res; 1977 May; 22 Suppl():311-3. PubMed ID: 912536
    [No Abstract]   [Full Text] [Related]  

  • 2. A new tracer method for the calculation of rates of bone formation and breakdown in osteoporosis and other generalised skeletal disorders.
    Reeve J; Hesp R; Wootton R
    Calcif Tissue Res; 1976 Dec; 22(2):191-206. PubMed ID: 1000353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-47 and strontium-85 tracer studies as a guide to isotope therapy of bone metastases.
    PEARSON OH; SOLARIC S; LAFFERTY FW; STORAASLIJP
    Radiology; 1962 Sep; 79():446-51. PubMed ID: 14484775
    [No Abstract]   [Full Text] [Related]  

  • 4. The assessment of bone formation and bone resorption in osteoporosis: a comparison between tetracycline-based iliac histomorphometry and whole body 85Sr kinetics.
    Reeve J; Arlot ME; Chavassieux PM; Edouard C; Green JR; Hesp R; Tellez M; Meunier PJ
    J Bone Miner Res; 1987 Dec; 2(6):479-89. PubMed ID: 3455632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on bone ion exchanges using multiple-tracer indicator-dilution techniques.
    Kelly PJ; Bassingthwaighte JB
    Fed Proc; 1977 Nov; 36(12):2634-9. PubMed ID: 913623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assay of bone resorption in vivo with 3H-tetracycline.
    Klein L; Jackman KV
    Calcif Tissue Res; 1976 Jun; 20(3):275-90. PubMed ID: 953784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model-independent comparison of the rates of uptake and short term retention of 47Ca and 85Sr by the skeleton.
    Reeve J; Hesp R
    Calcif Tissue Res; 1976 Dec; 22(2):183-9. PubMed ID: 1000352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of long-term pathologic effects of radioactive isotopes of calcium and strontium in bone and soft tissues, especially with reference to bone tumor production.
    KUZMA JF; HIRSCHBOECK JS
    AECU Rep; 1960 Apr; 4409():1-36 concl. PubMed ID: 24546416
    [No Abstract]   [Full Text] [Related]  

  • 9. Assays for bone resorption and bone formation.
    Mundy GR; Roodman GD; Bonewald LF; Oreffo RO; Boyce BF
    Methods Enzymol; 1991; 198():502-10. PubMed ID: 1857238
    [No Abstract]   [Full Text] [Related]  

  • 10. Cortical and cancellous bone: age-related changes in morphologic features, fluid spaces, and calcium homeostasis in dogs.
    Simonet WT; Bronk JT; Pinto MR; Williams EA; Meadows TH; Kelly PJ
    Mayo Clin Proc; 1988 Feb; 63(2):154-60. PubMed ID: 3339907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone resorption measurement with unusual bone markers: critical evaluation of the method in phosphorus-deficient and calcium-deficient growing rats.
    Thomasset M; Cuisinier-Gleizes P; Mathieu H
    Calcif Tissue Res; 1976 Aug; 21(1):1-15. PubMed ID: 953788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of whole body bone resorption rate: a comparison of urinary total hydroxyproline excretion with two radioisotopic tracer methods in osteoporosis.
    Deacon AC; Hulme P; Hesp R; Green JR; Tellez M; Reeve J
    Clin Chim Acta; 1987 Jul; 166(2-3):297-306. PubMed ID: 3621607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bone on Sr-89 and Ca-45 in beef roasts.
    BELL MC; BUESCHER RG
    J Am Diet Assoc; 1961 Dec; 39():567-8. PubMed ID: 13866827
    [No Abstract]   [Full Text] [Related]  

  • 14. Formation and resorption of bone induced by demineralized bone matrix implants in rats.
    Bauer FC; Nilsson OS; Törnkvist H
    Clin Orthop Relat Res; 1984 Dec; (191):139-43. PubMed ID: 6499305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strontium ranelate: a novel mode of action optimizing bone formation and resorption.
    Marie PJ
    Osteoporos Int; 2005 Jan; 16 Suppl 1():S7-10. PubMed ID: 15578159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in bone in the dog: calcium homeostasis.
    Williams EA; Kelly PJ
    J Orthop Res; 1984; 2(1):8-14. PubMed ID: 6491802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of 22Na as a tracer for long-term bone mineral turnover studies.
    Palmer HE; Rieksts GA; Palmer RF; Gillis MF
    Aviat Space Environ Med; 1979 Aug; 50(8):768-73. PubMed ID: 115453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancerogenic effects of Ca45 and Sr89 on bones of CF1 mice.
    ANDERSON WA; KUZMA JF; ZANDER GE
    AMA Arch Pathol; 1956 Oct; 62(4):262-71. PubMed ID: 13361669
    [No Abstract]   [Full Text] [Related]  

  • 19. Autoradiographic studies of calcium, phosphorus and strontium distribution in the bones of the growing pig.
    COMAR CL; LOTZ WE; BOYD GA
    Am J Anat; 1952 Jan; 90(1):113-29. PubMed ID: 14902690
    [No Abstract]   [Full Text] [Related]  

  • 20. The isotope trapping method: desorption rates of productive E.S complexes.
    Rose IA
    Methods Enzymol; 1980; 64():47-59. PubMed ID: 7374457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.