BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9125430)

  • 1. Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release.
    Carroll PT
    Brain Res; 1997 Apr; 753(1):47-55. PubMed ID: 9125430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of uptake and release of newly synthesized acetylcholine in PC12 cells overexpressing the rat vesicular acetylcholine transporter (VAChT).
    Roghani A; Carroll PT
    Brain Res Mol Brain Res; 2002 Apr; 100(1-2):21-30. PubMed ID: 12008018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence to suggest that cytosolic acetylcholine in rat hippocampal nerve terminals is not directly transferred into synaptic vesicles for release.
    Carroll PT
    Brain Res; 1996 Jun; 725(1):3-10. PubMed ID: 8828580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Veratridine-induced breakdown of cytosolic acetylcholine in rat hippocampal minces: an intraterminal form of acetylcholinesterase or choline O-acetyltransferase?
    Carroll PT; Badamchian M; Craig P; Lyness WH
    Brain Res; 1986 Sep; 383(1-2):83-99. PubMed ID: 3768708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the acetyl moiety of acetylcholine synthesized in rat striatal synaptosomes.
    Lefresne P; Hamon M; Beaujouan JC; Glowinski J
    Biochimie; 1977; 59(2):197-215. PubMed ID: 870085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 2-(4-phenylpiperidino)cyclohexanol (AH 5183) on the veratridine-induced increase in acetylcholine synthesis by rat hippocampal tissue.
    Carroll PT; Ivy MT
    J Neurochem; 1988 Sep; 51(3):808-19. PubMed ID: 3411328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity uptake of choline, a marker for cholinergic nerve terminals, is not specific in developing rat brain.
    Kotas AM; Prince AK
    Brain Res; 1987 Oct; 432(2):175-81. PubMed ID: 3676836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasoactive intestinal peptide increases acetylcholine synthesis by rat hippocampal slices.
    Lapchak PA; Collier B
    J Neurochem; 1988 Jan; 50(1):58-64. PubMed ID: 2826690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes.
    Levesque PC; Hare MF; Atchison WD
    Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of acetylcholine synthesis in presynaptic endings of cholinergic neurons of the central nervous system].
    Tuchek S; Dolezhal V; Richny Ia
    Neirofiziologiia; 1984; 16(5):603-11. PubMed ID: 6151119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empty synaptic vesicles recycle and undergo exocytosis at vesamicol-treated motor nerve terminals.
    Parsons RL; Calupca MA; Merriam LA; Prior C
    J Neurophysiol; 1999 Jun; 81(6):2696-700. PubMed ID: 10368389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion.
    Collier B; Katz HS
    J Physiol; 1971 May; 214(3):537-52. PubMed ID: 4325622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices.
    Dolezal V; Tucek S
    J Neurochem; 1981 Apr; 36(4):1323-30. PubMed ID: 6790669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain.
    Carroll PT
    Brain Res; 1985 Dec; 358(1-2):200-9. PubMed ID: 4075114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of muscarinic- and 5-HT1B-mediated modulation of [3H]acetylcholine release in hippocampal slices of rats with fimbria-fornix lesions and intrahippocampal grafts of septal origin.
    Cassel JC; Jeltsch H; Neufang B; Lauth D; Szabo B; Jackisch R
    Brain Res; 1995 Dec; 704(2):153-66. PubMed ID: 8788910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism.
    Unsworth CD; Johnson RG
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):553-7. PubMed ID: 2137245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of aluminum on acetyl-CoA and acetylcholine metabolism in nerve terminals.
    Bielarczyk H; Tomaszewicz M; Szutowicz A
    J Neurochem; 1998 Mar; 70(3):1175-81. PubMed ID: 9489739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmitter packaging at frog neuromuscular junctions exposed to anticholinesterases; the role of second-stage acetylcholine loading.
    Naves LA; Van der Kloot W
    J Neurophysiol; 1996 Oct; 76(4):2614-25. PubMed ID: 8899632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of acetate into acetylcholine, acetylcarnitine, and amino acids in the Torpedo electric organ.
    Corthay J; Dunant Y; Eder L; Loctin F
    J Neurochem; 1985 Dec; 45(6):1809-19. PubMed ID: 4056793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine.
    Bonanno G; Ruelle A; Andrioli GC; Raiteri M
    Brain Res; 1991 Jan; 539(2):191-5. PubMed ID: 2054596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.