These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1052 related articles for article (PubMed ID: 9125495)
1. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties. Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495 [TBL] [Abstract][Full Text] [Related]
2. Substrate binding and carboxylation by dethiobiotin synthetase--a kinetic and X-ray study. Alexeev D; Baxter RL; Smekal O; Sawyer L Structure; 1995 Nov; 3(11):1207-15. PubMed ID: 8591031 [TBL] [Abstract][Full Text] [Related]
3. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of an ATP-dependent carboxylase, dethiobiotin synthetase, based on crystallographic studies of complexes with substrates and a reaction intermediate. Huang W; Jia J; Gibson KJ; Taylor WS; Rendina AR; Schneider G; Lindqvist Y Biochemistry; 1995 Sep; 34(35):10985-95. PubMed ID: 7669756 [TBL] [Abstract][Full Text] [Related]
5. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase. Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic implications and family relationships from the structure of dethiobiotin synthetase. Alexeev D; Baxter RL; Sawyer L Structure; 1994 Nov; 2(11):1061-72. PubMed ID: 7881906 [TBL] [Abstract][Full Text] [Related]
7. Dethiobiotin synthetase: the carbonylation of 7,8-diaminonanoic acid proceeds regiospecifically via the N7-carbamate. Gibson KJ; Lorimer GH; Rendina AR; Taylor WS; Cohen G; Gatenby AA; Payne WG; Roe DC; Lockett BA; Nudelman A Biochemistry; 1995 Sep; 34(35):10976-84. PubMed ID: 7669755 [TBL] [Abstract][Full Text] [Related]
8. Isolation and chemistry of the mixed anhydride intermediate in the reaction catalyzed by dethiobiotin synthetase. Gibson KJ Biochemistry; 1997 Jul; 36(28):8474-8. PubMed ID: 9214291 [TBL] [Abstract][Full Text] [Related]
9. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study. Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis. Mueller EJ; Oh S; Kavalerchik E; Kappock TJ; Meyer E; Li C; Ealick SE; Stubbe J Biochemistry; 1999 Aug; 38(31):9831-9. PubMed ID: 10433689 [TBL] [Abstract][Full Text] [Related]
12. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557 [TBL] [Abstract][Full Text] [Related]
13. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP; Fetler L; Vachette P; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146 [TBL] [Abstract][Full Text] [Related]
14. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase. Jeffery CJ; Gloss LM; Petsko GA; Ringe D Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649 [TBL] [Abstract][Full Text] [Related]
15. Structural and mechanistic changes along an engineered path from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate synthases. Kona F; Xu X; Martin P; Kuzmic P; Gatti DL Biochemistry; 2007 Apr; 46(15):4532-44. PubMed ID: 17381075 [TBL] [Abstract][Full Text] [Related]
16. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
17. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential. Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617 [TBL] [Abstract][Full Text] [Related]
18. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis. Witmer MR; Palmieri-Young D; Villafranca JJ Protein Sci; 1994 Oct; 3(10):1746-59. PubMed ID: 7849593 [TBL] [Abstract][Full Text] [Related]
19. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase. Stapleton MA; Javid-Majd F; Harmon MF; Hanks BA; Grahmann JL; Mullins LS; Raushel FM Biochemistry; 1996 Nov; 35(45):14352-61. PubMed ID: 8916922 [TBL] [Abstract][Full Text] [Related]
20. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]