BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9125497)

  • 1. The structure of the cytidine deaminase-product complex provides evidence for efficient proton transfer and ground-state destabilization.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1997 Apr; 36(16):4768-74. PubMed ID: 9125497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1996 Feb; 35(5):1335-41. PubMed ID: 8634261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex.
    Betts L; Xiang S; Short SA; Wolfenden R; Carter CW
    J Mol Biol; 1994 Jan; 235(2):635-56. PubMed ID: 8289286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 1.48 A resolution crystal structure of the homotetrameric cytidine deaminase from mouse.
    Teh AH; Kimura M; Yamamoto M; Tanaka N; Yamaguchi I; Kumasaka T
    Biochemistry; 2006 Jun; 45(25):7825-33. PubMed ID: 16784234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-substrate complexes of adenosine and cytidine deaminases: absence of accumulation of water adducts.
    Shih P; Wolfenden R
    Biochemistry; 1996 Apr; 35(15):4697-703. PubMed ID: 8664259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase.
    Johansson E; Neuhard J; Willemoës M; Larsen S
    Biochemistry; 2004 May; 43(20):6020-9. PubMed ID: 15147186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase.
    Xiang S; Short SA; Wolfenden R; Carter CW
    Biochemistry; 1995 Apr; 34(14):4516-23. PubMed ID: 7718553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate.
    Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K
    Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analyses of Mycobacterium tuberculosis Rv3315c-encoded metal-dependent homotetrameric cytidine deaminase.
    Sánchez-Quitian ZA; Schneider CZ; Ducati RG; de Azevedo WF; Bloch C; Basso LA; Santos DS
    J Struct Biol; 2010 Mar; 169(3):413-23. PubMed ID: 20035876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantum chemical study of the catalysis for cytidine deaminase: contribution of the extra water molecule.
    Matsubara T; Ishikura M; Aida M
    J Chem Inf Model; 2006; 46(3):1276-85. PubMed ID: 16711747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: importance of proton transfers.
    Xu Q; Guo H; Gorin A; Guo H
    J Phys Chem B; 2007 Jun; 111(23):6501-6. PubMed ID: 17506543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site plasticity in D-amino acid oxidase: a crystallographic analysis.
    Todone F; Vanoni MA; Mozzarelli A; Bolognesi M; Coda A; Curti B; Mattevi A
    Biochemistry; 1997 May; 36(19):5853-60. PubMed ID: 9153426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of glutamate-104 in generating a transition state analogue inhibitor at the active site of cytidine deaminase.
    Carlow DC; Short SA; Wolfenden R
    Biochemistry; 1996 Jan; 35(3):948-54. PubMed ID: 8547277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specificity and catalysis of uracil DNA glycosylase. A molecular dynamics study of reactant and product complexes with DNA.
    Luo N; Mehler E; Osman R
    Biochemistry; 1999 Jul; 38(29):9209-20. PubMed ID: 10413495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of Delta 5-3-ketosteroid isomerase complexed with the steroid 19-nortestosterone hemisuccinate.
    Massiah MA; Abeygunawardana C; Gittis AG; Mildvan AS
    Biochemistry; 1998 Oct; 37(42):14701-12. PubMed ID: 9778345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.