These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9125512)

  • 41. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1.
    Schuller DJ; Zhu W; Stojiljkovic I; Wilks A; Poulos TL
    Biochemistry; 2001 Sep; 40(38):11552-8. PubMed ID: 11560504
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A single mutation converts Alr5027 from cyanobacteria Nostoc sp. PCC 7120 to a heme-binding protein with heme-degrading ability.
    Dojun N; Muranishi K; Ishimori K; Uchida T
    J Inorg Biochem; 2020 Feb; 203():110916. PubMed ID: 31739124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase.
    Geng J; Dornevil K; Liu A
    J Am Chem Soc; 2012 Jul; 134(29):12209-18. PubMed ID: 22742206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of rat heme oxygenase in Escherichia coli as a catalytically active, full-length form that binds to bacterial membranes.
    Ishikawa K; Sato M; Yoshida T
    Eur J Biochem; 1991 Nov; 202(1):161-5. PubMed ID: 1935972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water-assisted oxo mechanism for heme metabolism.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2005 Aug; 127(30):10686-92. PubMed ID: 16045356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance.
    Brüggemann H; Bauer R; Raffestin S; Gottschalk G
    Arch Microbiol; 2004 Oct; 182(2-3):259-63. PubMed ID: 15340779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An improved method for purification of recombinant truncated heme oxygenase-1 by expanded bed adsorption and gel filtration.
    Hu HB; Wang W; Han L; Zhou WP; Zhang XH
    Bioprocess Biosyst Eng; 2007 Mar; 30(2):87-90. PubMed ID: 17160582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined spectroscopic and structural approaches to explore the mechanism of histidine-ligated heme-dependent aromatic oxygenases.
    Nolan K; Wang Y
    Methods Enzymol; 2023; 685():405-432. PubMed ID: 37245909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of a conserved histidine residue, His324, in Trigonopsis variabilis D-amino acid oxidase.
    Lin LL; Wang WC; Ju SS; Chien HR; Hsu WH
    FEMS Microbiol Lett; 1999 Jul; 176(2):443-8. PubMed ID: 10427728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron spin resonance studies of wild-type and mutant cytochromes P-450d: effects of mutations at proximal, aromatic and distal sites on g values.
    Sotokawa H; Shimizu T; Furuya H; Sadeque AJ; Hatano M; Ohba Y; Iwaizumi M; Fujii-Kuriyama Y
    Biochim Biophys Acta; 1990 Jan; 1037(1):122-8. PubMed ID: 2153026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.
    Jiang Y; Trnka MJ; Medzihradszky KF; Ouellet H; Wang Y; Ortiz de Montellano PR
    J Inorg Biochem; 2009 Mar; 103(3):316-25. PubMed ID: 19135260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].
    Xia ZW; Cui WJ; Zhou WP; Zhang XH; Shen QX; Li YZ; Yu SC
    Shi Yan Sheng Wu Xue Bao; 2004 Oct; 37(5):375-83. PubMed ID: 15636365
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of losartan on heme oxygenase-1 expression in volume overloaded rats].
    Liu HM; Yuan LX; Li M; Qiao L; Zhao T
    Zhonghua Er Ke Za Zhi; 2005 Jan; 43(1):55-6. PubMed ID: 15796812
    [No Abstract]   [Full Text] [Related]  

  • 54. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase.
    Matsui T; Sugiyama R; Sakanashi K; Tamura Y; Iida M; Nambu Y; Higuchi T; Suematsu M; Ikeda-Saito M
    J Biol Chem; 2018 Oct; 293(43):16931-16939. PubMed ID: 30237172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unique coupling of mono- and dioxygenase chemistries in a single active site promotes heme degradation.
    Matsui T; Nambu S; Goulding CW; Takahashi S; Fujii H; Ikeda-Saito M
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3779-84. PubMed ID: 27006503
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Young Leaf Chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice.
    Li Q; Zhu FY; Gao X; Sun Y; Li S; Tao Y; Lo C; Liu H
    Planta; 2014 Oct; 240(4):701-12. PubMed ID: 25037719
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular cloning and characterization of a heme oxygenase1 gene from sunflower and its expression profiles in salinity acclimation.
    Zhu K; Jin Q; Samma MK; Lin G; Shen W
    Mol Biol Rep; 2014 Jun; 41(6):4109-21. PubMed ID: 24562628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO.
    Nambu S; Matsui T; Goulding CW; Takahashi S; Ikeda-Saito M
    J Biol Chem; 2013 Apr; 288(14):10101-10109. PubMed ID: 23420845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of a wheat heme oxygenase-1 gene and its responses to different abiotic stresses.
    Xu DK; Jin QJ; Xie YJ; Liu YH; Lin YT; Shen WB; Zhou YJ
    Int J Mol Sci; 2011; 12(11):7692-707. PubMed ID: 22174625
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation.
    Cao Z; Geng B; Xu S; Xuan W; Nie L; Shen W; Liang Y; Guan R
    J Exp Bot; 2011 Aug; 62(13):4675-89. PubMed ID: 21673093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.