BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 9125522)

  • 21. A bipartite substrate recognition motif for cyclin-dependent kinases.
    Takeda DY; Wohlschlegel JA; Dutta A
    J Biol Chem; 2001 Jan; 276(3):1993-7. PubMed ID: 11067844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells.
    Kurzawa L; Pellerano M; Coppolani JB; Morris MC
    PLoS One; 2011; 6(10):e26555. PubMed ID: 22028905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.
    Zeqiraj E; Filippi BM; Goldie S; Navratilova I; Boudeau J; Deak M; Alessi DR; van Aalten DM
    PLoS Biol; 2009 Jun; 7(6):e1000126. PubMed ID: 19513107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical inhibitors of cyclin-dependent kinases: insights into design from X-ray crystallographic studies.
    Noble ME; Endicott JA
    Pharmacol Ther; 1999; 82(2-3):269-78. PubMed ID: 10454204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach.
    Rout AK; Dehury B; Maharana J; Nayak C; Baisvar VS; Behera BK; Das BK
    J Mol Graph Model; 2018 May; 81():175-183. PubMed ID: 29574323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural dissection of cyclin dependent kinases regulation and protein recognition properties.
    Lolli G
    Cell Cycle; 2010 Apr; 9(8):1551-61. PubMed ID: 20372077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.
    Canela N; Orzáez M; Fucho R; Mateo F; Gutierrez R; Pineda-Lucena A; Bachs O; Pérez-Payá E
    J Biol Chem; 2006 Nov; 281(47):35942-53. PubMed ID: 17001081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orphan kinases turn eccentric: a new class of cyclin Y-activated, membrane-targeted CDKs.
    Mikolcevic P; Rainer J; Geley S
    Cell Cycle; 2012 Oct; 11(20):3758-68. PubMed ID: 22895054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of proline from the cyclin-binding motif in maize CDKA;1 results in lower affinity with its cyclin regulatory subunit.
    Méndez AAE; Pena LB; Curto LM; Fernández MM; Malchiodi EL; Garza-Aguilar SM; Vázquez-Ramos JM; Gallego SM
    Phytochemistry; 2020 Jan; 169():112165. PubMed ID: 31610323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of CDK/Cyclin Inhibitor Complexes for Structural Determination.
    Grigoroudis AI; Kontopidis G
    Methods Mol Biol; 2016; 1336():29-45. PubMed ID: 26231706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding.
    Faber EB; Sun L; Tang J; Roberts E; Ganeshkumar S; Wang N; Rasmussen D; Majumdar A; Hirsch LE; John K; Yang A; Khalid H; Hawkinson JE; Levinson NM; Chennathukuzhi V; Harki DA; Schönbrunn E; Georg GI
    Nat Commun; 2023 Jun; 14(1):3213. PubMed ID: 37270540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies.
    Kong X; Sun H; Pan P; Tian S; Li D; Li Y; Hou T
    Phys Chem Chem Phys; 2016 Jan; 18(3):2034-46. PubMed ID: 26686753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.
    Pazos E; Mascareñas JL; Vázquez ME
    Methods Mol Biol; 2016; 1336():67-83. PubMed ID: 26231709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tyr-nitration in maize CDKA;1 results in lower affinity for ATP binding.
    Méndez AAE; Mangialavori IC; Cabrera AV; Benavides MP; Vázquez-Ramos JM; Gallego SM
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140479. PubMed ID: 32599297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mechanisms of activation in CDK2.
    Bešker N; Amadei A; D'Abramo M
    J Biomol Struct Dyn; 2014 Dec; 32(12):1929-35. PubMed ID: 24125183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional model of the cyclin-dependent kinase 1 (CDK1): Ab initio active site parameters for molecular dynamics studies of CDKS.
    Cavalli A; Dezi C; Folkers G; Scapozza L; Recanatini M
    Proteins; 2001 Dec; 45(4):478-85. PubMed ID: 11746695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of Pongol, the Furanoflavonoid, as an Inhibitor of CDK7/Cyclin H/MAT1 and Its Preliminary Structure-Activity Relationship.
    Bhurta D; Bharate SB
    ACS Omega; 2023 Jan; 8(1):1291-1300. PubMed ID: 36643464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging approaches to CDK inhibitor development, a structural perspective.
    Hope I; Endicott JA; Watt JE
    RSC Chem Biol; 2023 Feb; 4(2):146-164. PubMed ID: 36794018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Easy Identification of Residues Involved on Structural Differences Between Nonphosphorylated and Phosphorylated CDK2Cyclin A Complexes Using Two-Dimensional Networks.
    Riadi G; Caballero J
    Mol Inform; 2014 Feb; 33(2):151-62. PubMed ID: 27485571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highlighting the Major Role of Cyclin C in Cyclin-Dependent Kinase 8 Activity through Molecular Dynamics Simulations.
    Ziada S; Diharce J; Serillon D; Bonnet P; Aci-Sèche S
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.