These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9125818)

  • 1. A mathematical model that predicts skeletal muscle force.
    Wexler AS; Ding J; Binder-Macleod SA
    IEEE Trans Biomed Eng; 1997 May; 44(5):337-48. PubMed ID: 9125818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimentally verified mathematical approach for the prediction of force developed by motor units at variable frequency stimulation patterns.
    Raikova R; Rusev R; Drzymała-Celichowska H; Krutki P; Aladjov H; Celichowski J
    J Biomech; 2010 May; 43(8):1546-52. PubMed ID: 20185140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive fatigue model--II: Predicting the effect of resting times on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):59-67. PubMed ID: 12173740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetanic responses of electrically stimulated paralyzed muscle at varying interpulse intervals.
    Carroll SG; Triolo RJ; Chizeck HJ; Kobetic R; Marsolais EB
    IEEE Trans Biomed Eng; 1989 Jul; 36(7):644-53. PubMed ID: 2787276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch.
    Phillips CA; Repperger DW; Neidhard-Doll AT; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of summation in incompletely fused tetanic contractions of rat muscle.
    Macintosh BR; Jones D; Devrome AN; Rassier DE
    J Biomech; 2007; 40(5):1066-72. PubMed ID: 16806237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of potentiation on the catchlike property of human skeletal muscles.
    Ding J; Storaska JA; Binder-Macleod SA
    Muscle Nerve; 2003 Mar; 27(3):312-9. PubMed ID: 12635118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force generated by fast motor units of the rat medial gastrocnemius muscle during stimulation with pulses at variable intervals.
    Krutki P; Pogrzebna M; Drzymała H; Raikova R; Celichowski J
    J Physiol Pharmacol; 2008 Mar; 59(1):85-100. PubMed ID: 18441390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isometric tetanic force measurement method of the tibialis anterior in the rat.
    Shin RH; Vathana T; Giessler GA; Friedrich PF; Bishop AT; Shin AY
    Microsurgery; 2008; 28(6):452-7. PubMed ID: 18623151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic costs of isometric force generation and maintenance of human skeletal muscle.
    Russ DW; Elliott MA; Vandenborne K; Walter GA; Binder-Macleod SA
    Am J Physiol Endocrinol Metab; 2002 Feb; 282(2):E448-57. PubMed ID: 11788378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isometric and concentric performance of electrically stimulated ankle plantar flexor muscles in intact rat.
    Willems ME; Stauber WT
    Exp Physiol; 1999 Mar; 84(2):379-89. PubMed ID: 10226178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic model of skeletal muscle isometric contraction: II. A phenomenological model of the skeletal muscle excitation-contraction coupling process.
    Neidhard-Doll AT; Phillips CA; Repperger DW; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):323-44. PubMed ID: 15121003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force response of rat soleus muscle to variable-frequency train stimulation.
    Binder-Macleod SA; Barrish WJ
    J Neurophysiol; 1992 Oct; 68(4):1068-78. PubMed ID: 1432068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.