These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 9125818)

  • 21. Changing stimulation patterns improves performance during electrically elicited contractions.
    Scott WB; Binder-Macleod SA
    Muscle Nerve; 2003 Aug; 28(2):174-80. PubMed ID: 12872321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of isometric contractions of rat skeletal muscle in vivo: duty cycle effects.
    Geronilla K; Wu JZ; Baker BA; Cutlip RG
    Biomed Mater Eng; 2006; 16(6):369-80. PubMed ID: 17119276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in rat muscle with compensatory overload occur in a sequential manner.
    Macpherson PC; Thayer RE; Rodgers C; Taylor AW; Noble EG
    Acta Physiol Hung; 1999; 86(2):111-25. PubMed ID: 10741870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Mar; 88(3):917-25. PubMed ID: 10710386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.
    Siebert T; Sust M; Thaller S; Tilp M; Wagner H
    Hum Mov Sci; 2007 Apr; 26(2):320-41. PubMed ID: 17343950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of length on the catchlike property of human quadriceps femoris muscle.
    Lee SC; Gerdom ML; Binder-Macleod SA
    Phys Ther; 1999 Aug; 79(8):738-48. PubMed ID: 10440660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influences of electromechanical events in defining skeletal muscle properties.
    Roy RR; Zhong H; Hodgson JA; Grossman EJ; Siengthai B; Talmadge RJ; Edgerton VR
    Muscle Nerve; 2002 Aug; 26(2):238-51. PubMed ID: 12210389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-step, predictive, isometric force model tested on data from human and rat muscles.
    Ding J; Binder-Macleod SA; Wexler AS
    J Appl Physiol (1985); 1998 Dec; 85(6):2176-89. PubMed ID: 9843541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of initial muscle length on force deficit following lengthening contractions in mammalian skeletal muscle.
    Gosselin LE; Burton H
    Muscle Nerve; 2002 Jun; 25(6):822-7. PubMed ID: 12115970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical equation of fusion index of tetanic contraction of skeletal muscles.
    Watanabe S; Kitawaki T; Oka H
    J Electromyogr Kinesiol; 2010 Apr; 20(2):284-9. PubMed ID: 19332376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries.
    Ding J; Chou LW; Kesar TM; Lee SC; Johnston TE; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2007 Aug; 36(2):214-22. PubMed ID: 17503498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heart muscle: mathematical modelling of the mechanical activity and modelling of mechanochemical uncoupling.
    Katsnelson LB; Izakov VYa ; Markhasin VS
    Gen Physiol Biophys; 1990 Jun; 9(3):219-43. PubMed ID: 2394370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased cAMP as a positive inotropic factor for mammalian skeletal muscle in vitro.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2003 Oct; 81(10):986-96. PubMed ID: 14608417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle.
    MacIntosh BR; Bryan SN
    Pflugers Arch; 2002 Mar; 443(5-6):804-12. PubMed ID: 11889579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions.
    El Makssoud H; Guiraud D; Poignet P; Hayashibe M; Wieber PB; Yoshida K; Azevedo-Coste C
    Biol Cybern; 2011 Aug; 105(2):121-38. PubMed ID: 21761241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A predictive model of fatigue in human skeletal muscles.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Oct; 89(4):1322-32. PubMed ID: 11007565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catchlike property of rat diaphragm: subsequent train frequency effects in variable-train stimulation.
    van Lunteren E; Sankey CB
    J Appl Physiol (1985); 2000 Feb; 88(2):586-98. PubMed ID: 10658027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FES control of isometric forces in the rat hindlimb using many muscles.
    Jarc AM; Berniker M; Tresch MC
    IEEE Trans Biomed Eng; 2013 May; 60(5):1422-30. PubMed ID: 23303688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.