These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 9126331)
61. Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. Chen XZ; Zhu T; Smith DE; Hediger MA J Biol Chem; 1999 Jan; 274(5):2773-9. PubMed ID: 9915809 [TBL] [Abstract][Full Text] [Related]
62. Nonradioactive monitoring of organic and inorganic solute transport into single Xenopus oocytes by capillary zone electrophoresis. Nussberger S; Foret F; Hebert SC; Karger BL; Hediger MA Biophys J; 1996 Feb; 70(2):998-1005. PubMed ID: 8789117 [TBL] [Abstract][Full Text] [Related]
63. Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Terada T; Saito H; Mukai M; Inui K Am J Physiol; 1997 Nov; 273(5):F706-11. PubMed ID: 9374833 [TBL] [Abstract][Full Text] [Related]
64. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. Verri T; Kottra G; Romano A; Tiso N; Peric M; Maffia M; Boll M; Argenton F; Daniel H; Storelli C FEBS Lett; 2003 Aug; 549(1-3):115-22. PubMed ID: 12914936 [TBL] [Abstract][Full Text] [Related]
65. Transport of amino acid aryl amides by the intestinal H+/peptide cotransport system, PEPT1. Börner V; Fei YJ; Hartrodt B; Ganapathy V; Leibach FH; Neubert K; Brandsch M Eur J Biochem; 1998 Aug; 255(3):698-702. PubMed ID: 9738910 [TBL] [Abstract][Full Text] [Related]
66. Molecular and integrative physiology of intestinal peptide transport. Daniel H Annu Rev Physiol; 2004; 66():361-84. PubMed ID: 14977407 [TBL] [Abstract][Full Text] [Related]
67. Site-directed mutation of arginine 282 to glutamate uncouples the movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1. Meredith D J Biol Chem; 2004 Apr; 279(16):15795-8. PubMed ID: 14715671 [TBL] [Abstract][Full Text] [Related]
68. Glycans in the intestinal peptide transporter PEPT1 contribute to function and protect from proteolysis. Stelzl T; Geillinger-Kästle KE; Stolz J; Daniel H Am J Physiol Gastrointest Liver Physiol; 2017 Jun; 312(6):G580-G591. PubMed ID: 28336547 [TBL] [Abstract][Full Text] [Related]
69. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hPEPT1. Geissler S; Hellwig M; Zwarg M; Markwardt F; Henle T; Brandsch M J Agric Food Chem; 2010 Feb; 58(4):2543-7. PubMed ID: 20104847 [TBL] [Abstract][Full Text] [Related]
70. Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, beta-lactam antibiotics and ACE-inhibitors. Boll M; Markovich D; Weber WM; Korte H; Daniel H; Murer H Pflugers Arch; 1994 Nov; 429(1):146-9. PubMed ID: 7708476 [TBL] [Abstract][Full Text] [Related]
71. Identification and characterization of the Atlantic salmon peptide transporter 1a. Gomes AS; Vacca F; Cinquetti R; Murashita K; Barca A; Bossi E; Rønnestad I; Verri T Am J Physiol Cell Physiol; 2020 Jan; 318(1):C191-C204. PubMed ID: 31664857 [TBL] [Abstract][Full Text] [Related]
72. An update on renal peptide transporters. Daniel H; Rubio-Aliaga I Am J Physiol Renal Physiol; 2003 May; 284(5):F885-92. PubMed ID: 12676733 [TBL] [Abstract][Full Text] [Related]
73. Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Terada T; Sawada K; Irie M; Saito H; Hashimoto Y; Inui K Pflugers Arch; 2000 Sep; 440(5):679-84. PubMed ID: 11007306 [TBL] [Abstract][Full Text] [Related]
74. Comparison of the baculovirus-insect cell and Pichia pastoris heterologous systems for the expression of the human tumor suppressor protein RNASET2. Campomenosi P; Cinquetti R; Tallarita E; Lindqvist C; Raimondi I; Grassi P; Näsman J; Dell A; Haslam SM; Taramelli R; Acquati F Biotechnol Appl Biochem; 2011; 58(1):39-49. PubMed ID: 21446958 [TBL] [Abstract][Full Text] [Related]
75. Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Terada T; Sawada K; Saito H; Hashimoto Y; Inui K Am J Physiol; 1999 Jun; 276(6):G1435-41. PubMed ID: 10362647 [TBL] [Abstract][Full Text] [Related]
76. Identification of the histidine residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1. Terada T; Saito H; Mukai M; Inui KI FEBS Lett; 1996 Sep; 394(2):196-200. PubMed ID: 8843163 [TBL] [Abstract][Full Text] [Related]
77. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. Shiraga T; Miyamoto K; Tanaka H; Yamamoto H; Taketani Y; Morita K; Tamai I; Tsuji A; Takeda E Gastroenterology; 1999 Feb; 116(2):354-62. PubMed ID: 9922316 [TBL] [Abstract][Full Text] [Related]
78. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. Sugawara M; Huang W; Fei YJ; Leibach FH; Ganapathy V; Ganapathy ME J Pharm Sci; 2000 Jun; 89(6):781-9. PubMed ID: 10824137 [TBL] [Abstract][Full Text] [Related]
79. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes. Panitsas KE; Boyd CA; Meredith D Pflugers Arch; 2006 Apr; 452(1):53-63. PubMed ID: 16465547 [TBL] [Abstract][Full Text] [Related]
80. Molecular cloning and functional expression of atlantic salmon peptide transporter 1 in Xenopus oocytes reveals efficient intestinal uptake of lysine-containing and other bioactive di- and tripeptides in teleost fish. Rønnestad I; Murashita K; Kottra G; Jordal AE; Narawane S; Jolly C; Daniel H; Verri T J Nutr; 2010 May; 140(5):893-900. PubMed ID: 20220205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]