These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 9126350)
1. Identification of a novel positive regulator of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. Prieto MA; García JL Biochem Biophys Res Commun; 1997 Mar; 232(3):759-65. PubMed ID: 9126350 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Prieto MA; Díaz E; García JL J Bacteriol; 1996 Jan; 178(1):111-20. PubMed ID: 8550403 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. Prieto MA; Garcia JL J Biol Chem; 1994 Sep; 269(36):22823-9. PubMed ID: 8077235 [TBL] [Abstract][Full Text] [Related]
4. A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. Barnes MR; Duetz WA; Williams PA J Bacteriol; 1997 Oct; 179(19):6145-53. PubMed ID: 9324265 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning and analysis of the genes encoding the 4-hydroxyphenylacetate hydroxylase from Klebsiella pneumoniae. Gibello A; Suárez M; Allende JL; Martín M Arch Microbiol; 1997; 167(2-3):160-6. PubMed ID: 9133323 [TBL] [Abstract][Full Text] [Related]
6. Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Ramos JL; Michan C; Rojo F; Dwyer D; Timmis K J Mol Biol; 1990 Jan; 211(2):373-82. PubMed ID: 2407853 [TBL] [Abstract][Full Text] [Related]
7. Identification of the 4-hydroxyphenylacetate transport gene of Escherichia coli W: construction of a highly sensitive cellular biosensor. Prieto MA; García JL FEBS Lett; 1997 Sep; 414(2):293-7. PubMed ID: 9315705 [TBL] [Abstract][Full Text] [Related]
8. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Song J; Jensen RA Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433 [TBL] [Abstract][Full Text] [Related]
9. Superimposed levels of regulation of the 4-hydroxyphenylacetate catabolic pathway in Escherichia coli. Galàn B; Kolb A; Garciá JL; Prieto MA J Biol Chem; 2001 Oct; 276(40):37060-8. PubMed ID: 11477101 [TBL] [Abstract][Full Text] [Related]
10. p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. Eaton RW J Bacteriol; 1997 May; 179(10):3171-80. PubMed ID: 9150211 [TBL] [Abstract][Full Text] [Related]
11. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
12. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Song S; Park C J Bacteriol; 1997 Nov; 179(22):7025-32. PubMed ID: 9371449 [TBL] [Abstract][Full Text] [Related]
13. Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. Velasco A; Alonso S; García JL; Perera J; Díaz E J Bacteriol; 1998 Mar; 180(5):1063-71. PubMed ID: 9495743 [TBL] [Abstract][Full Text] [Related]
14. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. Fernández C; Díaz E; García JL Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528 [TBL] [Abstract][Full Text] [Related]
15. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. Sá-Nogueira I; Mota LJ J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819 [TBL] [Abstract][Full Text] [Related]
16. Leucine-responsive regulatory protein controls the expression of both the pap and fan pili operons in Escherichia coli. Braaten BA; Platko JV; van der Woude MW; Simons BH; de Graaf FK; Calvo JM; Low DA Proc Natl Acad Sci U S A; 1992 May; 89(10):4250-4. PubMed ID: 1350087 [TBL] [Abstract][Full Text] [Related]
17. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. Ferrández A; Miñambres B; García B; Olivera ER; Luengo JM; García JL; Díaz E J Biol Chem; 1998 Oct; 273(40):25974-86. PubMed ID: 9748275 [TBL] [Abstract][Full Text] [Related]
18. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. Shingler V; Bartilson M; Moore T J Bacteriol; 1993 Mar; 175(6):1596-604. PubMed ID: 8449869 [TBL] [Abstract][Full Text] [Related]
19. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons. Raina S; Missiakas D; Baird L; Kumar S; Georgopoulos C J Bacteriol; 1993 Aug; 175(16):5009-21. PubMed ID: 8102362 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Ramos JL; Marqués S; Timmis KN Annu Rev Microbiol; 1997; 51():341-73. PubMed ID: 9343354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]