BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9126428)

  • 1. Plant monooxygenases: participation in xenobiotic oxidation.
    Khatisashvili G; Gordeziani M; Kvesitadze G; Korte F
    Ecotoxicol Environ Saf; 1997 Mar; 36(2):118-22. PubMed ID: 9126428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of xenobiotics by plant microsomes, a reconstituted cytochrome P450 system and peroxidase: a comparative study.
    Stiborová M; Schmeiser HH; Frei E
    Phytochemistry; 2000 Jun; 54(4):353-62. PubMed ID: 10897475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the principal enzymes oxidizing the xenobiotics in plants: cytochromes P-450 or peroxidases? (A hypothesis).
    Stiborová M; Anzenbacher P
    Gen Physiol Biophys; 1991 Apr; 10(2):209-16. PubMed ID: 1864497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic toxicants and plants.
    Korte F; Kvesitadze G; Ugrekhelidze D; Gordeziani M; Khatisashvili G; Buadze O; Zaalishvili G; Coulston F
    Ecotoxicol Environ Saf; 2000 Sep; 47(1):1-26. PubMed ID: 10993699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Activity of the xenobiotic metabolism system under the effect of chemical pollution of the atmosphere and water].
    Mukhambetova LKh; Nasonova AA; Dolinskaia SI
    Vopr Med Khim; 1993; 39(6):57-60. PubMed ID: 8303878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of hydrogen sulfide containing gas condensate on the hepatic microsomal monooxygenase system].
    Boev VM; Nikonorov AA; Perepelkin SV; Filippov VK
    Gig Sanit; 1997; (5):5-6. PubMed ID: 9378351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranes of retinal microsomes: a new protein of the microsomal monooxigenase system.
    Etingof RN; Shushakova ND
    Membr Cell Biol; 1997; 11(2):175-86. PubMed ID: 9354397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides.
    Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D
    Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microsomal cytochromes P-450 of liver cells and industrial and environmental xenobiotics].
    Lutz W
    Postepy Hig Med Dosw; 1984; 38(4):451-80. PubMed ID: 6399107
    [No Abstract]   [Full Text] [Related]  

  • 10. NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans.
    Kurian JR; Bajad SU; Miller JL; Chin NA; Trepanier LA
    J Pharmacol Exp Ther; 2004 Dec; 311(3):1171-8. PubMed ID: 15302896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of rifampicin on the depressive action of interleukin-1 on cytochrome P-450-linked monooxygenase system.
    Kurokohchi K; Yoneyama H; Nishioka M; Ichikawa Y
    Metabolism; 2001 Feb; 50(2):231-6. PubMed ID: 11229434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals.
    Dmitriev LF
    Membr Cell Biol; 2001 Jul; 14(5):649-62. PubMed ID: 11699868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biochemistry of drug metabolism--an introduction: Part 2. Redox reactions and their enzymes.
    Testa B; Krämer SD
    Chem Biodivers; 2007 Mar; 4(3):257-405. PubMed ID: 17372942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant sterol biosynthesis: identification of a NADPH dependent sterone reductase involved in sterol-4 demethylation.
    Pascal S; Taton M; Rahier A
    Arch Biochem Biophys; 1994 Jul; 312(1):260-71. PubMed ID: 8031136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of gamma-linolenic acid on microsomal oxidation in the rat liver following gamma-irradiation].
    Zavodnik LB; Sushko LI; Tarasov IuA; Ignatenko KV; Chumachenko SS; Ovchinnikov VA; Brzosko V; Buko VU
    Eksp Klin Farmakol; 2001; 64(4):59-62. PubMed ID: 11589114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 enzyme activities in the Australian brushtail possum trichosurus vulpesula: a comparison with the rat, rabbit, sheep and chicken.
    Olkowski A; Gooneratne R; Eason C
    Vet Hum Toxicol; 1998 Apr; 40(2):70-6. PubMed ID: 9554057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of sulfamethoxazole and dapsone hydroxylamines by a microsomal enzyme system purified from pig liver and pig and human liver microsomes.
    Clement B; Behrens D; Amschler J; Matschke K; Wolf S; Havemeyer A
    Life Sci; 2005 May; 77(2):205-19. PubMed ID: 15862605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes.
    Miyazawa M; Shindo M; Shimada T
    Drug Metab Dispos; 2001 Feb; 29(2):200-5. PubMed ID: 11159812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Components of the cytochrome P450-dependent monooxygenase system and 'NADPH-independent benzo[a]pyrene hydroxylase' activity in a wide range of marine invertebrate species.
    Solé M; Livingstone DR
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 May; 141(1):20-31. PubMed ID: 15979946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.