These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9126830)
1. The 80's loop (residues 78 to 85) is important for the differential activity of retroviral proteases. Stebbins J; Towler EM; Tennant MG; Deckman IC; Debouck C J Mol Biol; 1997 Apr; 267(3):467-75. PubMed ID: 9126830 [TBL] [Abstract][Full Text] [Related]
2. Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Menéndez-Arias L; Gotte D; Oroszlan S Virology; 1993 Oct; 196(2):557-63. PubMed ID: 8372434 [TBL] [Abstract][Full Text] [Related]
3. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional structures of HIV-1 and SIV protease product complexes. Rose RB; Craik CS; Douglas NL; Stroud RM Biochemistry; 1996 Oct; 35(39):12933-44. PubMed ID: 8841139 [TBL] [Abstract][Full Text] [Related]
5. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity. Hoog SS; Towler EM; Zhao B; Doyle ML; Debouck C; Abdel-Meguid SS Biochemistry; 1996 Aug; 35(32):10279-86. PubMed ID: 8756683 [TBL] [Abstract][Full Text] [Related]
6. A structural model for the retroviral proteases. Pearl LH; Taylor WR Nature; 1987 Sep 24-30; 329(6137):351-4. PubMed ID: 3306411 [TBL] [Abstract][Full Text] [Related]
7. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease? Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826 [TBL] [Abstract][Full Text] [Related]
8. Naturally occurring amino acid polymorphisms in human immunodeficiency virus type 1 (HIV-1) Gag p7(NC) and the C-cleavage site impact Gag-Pol processing by HIV-1 protease. Goodenow MM; Bloom G; Rose SL; Pomeroy SM; O'Brien PO; Perez EE; Sleasman JW; Dunn BM Virology; 2002 Jan; 292(1):137-49. PubMed ID: 11878916 [TBL] [Abstract][Full Text] [Related]
9. Subsite preferences of retroviral proteinases. Dunn BM; Gustchina A; Wlodawer A; Kay J Methods Enzymol; 1994; 241():254-78. PubMed ID: 7854181 [No Abstract] [Full Text] [Related]
10. Evolutionarily conserved functional mechanics across pepsin-like and retroviral aspartic proteases. Cascella M; Micheletti C; Rothlisberger U; Carloni P J Am Chem Soc; 2005 Mar; 127(11):3734-42. PubMed ID: 15771507 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Miller M; Jaskólski M; Rao JK; Leis J; Wlodawer A Nature; 1989 Feb; 337(6207):576-9. PubMed ID: 2536902 [TBL] [Abstract][Full Text] [Related]
12. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Rose RB; Craik CS; Stroud RM Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases. Debouck C Adv Exp Med Biol; 1991; 306():407-15. PubMed ID: 1812737 [No Abstract] [Full Text] [Related]
14. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence. Tözsér J; Shulenin S; Louis JM; Copeland TD; Oroszlan S Biochemistry; 2004 Apr; 43(14):4304-12. PubMed ID: 15065874 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization. Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875 [TBL] [Abstract][Full Text] [Related]
16. Point mutation in avian sarcoma leukaemia virus protease which increases its activity but impairs infectious virus production. Arad G; Chorev M; Shtorch A; Goldblum A; Kotler M J Gen Virol; 1995 Aug; 76 ( Pt 8)():1917-25. PubMed ID: 7543558 [TBL] [Abstract][Full Text] [Related]
17. Expression and molecular characterization of an enzymatically active recombinant human spumaretrovirus protease. Pfrepper KI; Löchelt M; Schnölzer M; Flügel RM Biochem Biophys Res Commun; 1997 Aug; 237(3):548-53. PubMed ID: 9299401 [TBL] [Abstract][Full Text] [Related]
18. Expression systems for retroviral proteases. Stebbins J; Debouck C Methods Enzymol; 1994; 241():3-16. PubMed ID: 7854184 [No Abstract] [Full Text] [Related]
19. Alternative native flap conformation revealed by 2.3 A resolution structure of SIV proteinase. Wilderspin AF; Sugrue RJ J Mol Biol; 1994 May; 239(1):97-103. PubMed ID: 8196050 [TBL] [Abstract][Full Text] [Related]
20. Calcium-free calmodulin is a substrate of proteases from human immunodeficiency viruses 1 and 2. Tomasselli AG; Howe WJ; Hui JO; Sawyer TK; Reardon IM; DeCamp DL; Craik CS; Heinrikson RL Proteins; 1991; 10(1):1-9. PubMed ID: 2062825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]